
August 2, 2014

We come from the 8 bit resolution controllers, to 10bit controllers of
the the Cougar era, then to today’s 12bit resolution in the shadow of
Warthog. Each improvement gave us real tangible benefits that we can
feel. With each newer generation of micro controller units, the
resolution of the built-in Analog Digital Converters keep improving
their resolution, where is the point that we humans can no longer tell
the difference when it comes to joystick controllers?

!
Wait… Warthog is 16bit, they said, “16-bit resolution (65536 x 65536
values)”, http://www.thrustmaster.com/en_UK/products/hotas-
warthog. Not exactly. Read on.

!
In this article, I will not give you rigorous arguments or evidences
worthy of academic journal nor as evidences in court. Instead, I will
give you arguments and reasonings for you to think for yourself.

!
!
!
!

�1

You want more resolution? How
much is enough?

On Resolution!
Everybody wants more resolution for their controllers. What
good is it? What is it? How much is enough?

http://www.thrustmaster.com/en_UK/products/hotas-warthog

August 2, 2014

Digital Resolution!
!
	

 The resolution of the converter indicates the number of discrete

values it can produce over the range of analog values. — http://
en.wikipedia.org/wiki/Analog-to-digital_converter	

!
Your average computers do not process analog signals, period. They
only process binary digital signals, either 1 or 0. There are many good
reasons for computers to do that, I will not go into too much details.

So, in order for your computer, or in our case a MicroController Units
(MCUs) to process analog signals, they must be converted to digital
first. This is the job for Analog Digital Converters (the other way
around is the Digital Analog Converter, DAC, to convert digital
signals to analog, the way your MP3 works).

!
How Some of the ADCs work

There are several methods of constructing Analog Digital Converters,
we will only discuss one of those called Successive approximation
ADCs.

The successive approximation Analog to digital converter circuit
typically consists of four chief subcircuits:	

1. A sample and hold circuit to acquire the input voltage (Vin).	

2. An analog voltage comparator that compares Vin to the output of
the internal DAC and outputs the result of the comparison to
the successive approximation register (SAR).	

3. A successive approximation register subcircuit designed to supply
an approximate digital code of Vin to the internal DAC.	

4. An internal reference DAC that, for comparison with VREF,
supplies the comparator with an analog voltage equal to the
digital code output of the SARin. 	

http://en.wikipedia.org/wiki/Successive_Approximation_ADC.	

!
�2

http://en.wikipedia.org/wiki/Analog-to-digital_converter
http://en.wikipedia.org/wiki/Successive_Approximation_ADC

August 2, 2014

The Sample & Hold circuit could be a simple as a capacitor (sample)
front ended by a switch (hold). So that when the switch is closed the
analog signal is allowed in and charge up the capacitor. Charging a
capacitor takes time. A capacitor’s voltage does not change
instantaneously. When the switch is opened, the charge/voltage stay
unchanged so the main ADC circuits can measure the voltage without
being disturbed.

If you put on a 16 channel multiplexer (think of it as a 16 to 1 selector
connecting one of the 16 inputs to the capacitor) in front of the S/H
circuit, then you got a 16 channel ADC that can sample 16 input lines
(not all at once, of course).

The important thing about this ADC talk is that it takes time to setup
the multiplexer, the S/H, and then the process of successive
approximation to run to completion. You should notice from the above
Wiki description of the the Successive Approximation, that it needs to
tell the DAC to generate one voltage at a time, compare it, then
generate another voltage and compare, until it finds the final correct
voltage that match the incoming signal. There are much faster
methods, but they still take a long time in the view of a fast hundreds
MHz CPU core. The time the ADC needs to setup, sample, compare,
and generate the digital value is directly related to the sampling rate of
an ADC.

That is, when the firmware is running, you have to tell the ADC to
start on a channel (or more), wait for the ADC to complete its process,
and then read the converted digital value(s) from the ADC. The ADC
module on the SAM4S chip is quite a fast one. It is capable of
1000ksps. That is one million sampling cycles. Let’s say you tell it to
do all 16 channels in one shot. It will probably take a little bit more
than 16µs. Let’s say you are using a slow CPU running at 24MHz.
What are you going to tell the CPU to do during that 24x16 = 384
CPU cycles? Do nothing but wait? Or do you tell it to check whether
the ADC is done 384 times? The simplest way to do is the later, and a
lot of programmers actually do that.

What if your CPU is running at 120MHz? The CPU cycles to wait for
the 16µs is about 1920 cycles!!! You could have done a lot of other
things during this 1920 cycles! Now, run the ADC conversion 1000
times a second. Meaning, you waste 192000 cycles per second, just
waiting for the ADC, Bubba!

That’s called a busy loop. One of the worst things you could do in
programming. Although a busy loop is one of the worst things you
could do in programming, sometimes, it’s the only way. But before

�3

August 2, 2014

you use it, you better search for all the possible alternatives and see if
you can avoid it.

A variation of this dumb busy loop checking the ADC complete status
is to do a busy loop checking on time elapsed. You basically write a
busy loop to check whether the time tick has passed the specified
period of time. So, instead of busy polling the ADC, you find the time
ADC needed to complete its conversion process and you do a busy
loop waiting for the time to pass. A lot of the Arduino crowd does
this….

It’s not better, in fact, it’s worse. What happens when you estimated
the time incorrectly? Or somebody adjusted the overall system clock
speed? In other words, the later Arduino crowd approach is timing
dependent. It’s just not smart!

!
How Much Resolution Is Good Enough?

That’s a long way to get to what we really want to talk about. How
much resolution is good enough and what else do we need other than
resolution? Let’s get to the resolution first.

We know, from experience, the upgrade from 10bit to 12bit makes a
huge difference in flight controls, i.e. your joystick, throttle, and
rudder. Why is it so? Let’s compute.

Let’s say, the pivot point of the gimbal to the top of the stick is
10” (about there for the Warthog), and the swing angle of the stick is
25º each side, so we have total of 50º, and the angle of the stick
movement from the center is 𝜃.

Then, we know the arc length of the tip is as the following, where 𝜃 is
in radian unit.

	 length(arc) = r𝜃

At the resolution of 10bit. You have maximum 1024 steps. So, we
have,

 50 ÷ 1024 = 0.0488º .

Here, we are assuming that the mechanical linkage would rotate the
potentiometer the full 50º when the stick moves 50º.

Plug this into the equation.

�4

August 2, 2014

 10” × 0.0488 × π / 180 = 0.0085” = 0.216mm

Now, let’s increase the resolution to 12bit, i.e. 4096. We get this.

 10” × (50 ÷ 4096) × π / 180 = 0.00213” = 0.0541mm

Now, let’s ratchet it up again to 14bit. We get this.

 10” × (50 ÷ 16384) × π / 180 = 0.000533” = 0.0135mm

At 16bit, we get this.

 10” × (50 ÷ 65536) × π / 180 = 0.000133” = 0.00338mm

At 14bit, that’s about 0.5 mil, and 14 micron. If you tell me that you
can tell any difference below that resolution by bumping it up to 16bit,
I have to either call you a liar or the SuperMan!

How about if you mount it on the floor, as a center stick? Ok. Let’s
say that your pivot point to the top of the stick is about 2 feet, i.e. 24”.
Then at 14bit resolution, you get this for 12bit, 14bit, and 16bit.

 24” × (50 ÷ 4096) × π / 180 = 0.0051” = 0.12mm

 24” × (50 ÷ 16384) × π / 180 = 0.00128” = 0.032mm

 24” × (50 ÷ 65536) × π / 180 = 0.00032” = 0.008mm

Ahha! There, you can probably tell the difference between 12bit and
14bit. 0.1mm is in the realm of possibility to detect by your hand, but
not 0.03mm. 0.1mm may be just that little nudge to get the bead on
that bandit. But 0.03mm is like you breath a bit harder. 0.008mm?
Your heart in the vein of your hand probably causes more vibration
than that!

So, by the above back-of-the-envelope calculations, you know there is
no point of increasing the stick resolution over 14bit. Anything beyond
that is waste of time. Tell those who say otherwise to bug off, or
provide calculations and proofs to dispute the above calculations.

Remember, though, we are talking about stick resolution. We are not
talking about other uses of ADCs. But, the most resolution hungry
“thing” in your pit is probably the stick, unless you get into motion
control of using servo motors to move your entire cockpit. That is a
completely different story.

!
Now, you know why I limit the resolution of the Hempstick to 14bit
even though I have enough ADC sampling rate and CPU cycles to
increase it to 16bit.

�5

August 2, 2014

!
However, one of the big assumptions we have is that your mechanical
linkage moves the pot 50º when the stick moves 50º. What if your pot
is a 360º range pot, but your only move 50º? That’s almost like a 1 to
8 gear reduction. In that case, it’s equivalent of losing 3 bits
resolution. Also, you cannot drive a pot from 0 to Vcc. If you drive the
pot to Vcc, it means 0 Ω and that’s a short circuit. Sometime will burn
or the MCU may crash/brownout…. bad things will happen.So, either
you never drive the full range or you put a little extra current limiting
resistor in series of the pot. Whatever it is, you lose a bit of the pot
range.

This problem can be solved by using a programmable Hall Effect
Sensor like the MLX90316 or MLX90333 that are capable of rail-to-
rail radiometric output. What this means is that it outputs voltage from
0 to Vcc at the ratio of the range your program in. For instance, if I
program the MLX90316 to between 0 to 120º range, 0º outputs 0V,
and 120º outputs Vcc (3.3V or 5V, does not matter), then at the mid-
point, it outputs 1/2Vcc. This way, you can drive the Hall Sensor hard
to the wall and it will not cause a short. You just have to design the
mechanical linkage to drive the Hall Sensor as much to the
programmed extremes.

The lessons learned here is that if you design your sensor and
mechanical linkage correctly, you don’t need anything beyond 14bit.
You will only need 16bit if your mechanical design is not ideal so you
are forced to waste resolution.

!
Sampling Rate

Before we get into disputing Warthog’s 16bit resolution claim, we
must talk about the other important factor in using ADC, the sampling
rate.

No matter how high your resolution is, if your sampling rate is
horrible, the resolution does not matter. Let’s take it to the extreme, 1
second per sample, it’s completely useless for a joystick even if you
have 16bit resolution. It means you can only change your direction
once every second. Dude, one second is ling enough to eat three
missiles up your ass!

Clearly, by guessing, 500KHz is not necessary (X gets 500ksps, and Y
gets 500ksps, as we have 1000ksps on the SAM4S chip). How much
then?

�6

August 2, 2014

The average human reaction time from seeing something, the signal
gets to the brain, the brain reacts to it and command signals get send to
the muscles and move the muscles, takes about on average 200ms,
http://www.humanbenchmark.com/tests/reactiontime/.

Some elite athletes have been tested at about 80ms. But according to
the above URL, they say it’s about 130ms. Let’s be generous, and give
it 100ms.

This 100ms is a straight see-something-and-react. There is also the
factor of the “in-between” anticipated actions. That is, you can
through practice, anticipate the movements, or tracking, by moving
your hands faster or slower in a smooth fluid continuous motion to get
in between the 100ms. How much more? I don’t know.

A rule of thumb in electronics is to give it 10x factor. That’s 10ms.
Because we have no idea how humans are capable of anticipating the
in-between motions, let’s give it another 10x safety factor. We get
1ms. Of course, no self-respecting fighter jocks are going to admit that
they are in the 200ms average crowd. I give you 1ms for your ease of
mind.

It so happened that the Full-Speed USB has a maximum polling rate
of 1000Hz, i.e. 1ms. That’s it. 1ms it is. I would say, anything higher
than 1ms is waste of time.

!
The SAM4S chip is capable of High-Speed USB. That is, it’s capable
of sending USB reports at much higher rates. But, I personally think
that above arguments should have convinced you that sub-millisecond
report rate is not necessary, just plain old waste of MCU cycles and
your host computer cycles.

!
Oversampling & Decimation

It is possible to increase resolution by oversampling. Meaning, if yo u
have excessive sampling rate, you can sample more and use it to
increase resolution, http://www.atmel.com/images/doc8003.pdf.

Basically, the formula looks like this.

fsamplilng = 4n x fnyquist

where n = the number of bits to increase.

�7

http://www.humanbenchmark.com/tests/reactiontime/
http://www.atmel.com/images/doc8003.pdf

August 2, 2014

That basically means, if you have a sampling rate you want to have,
fnyquist, and you wish to increase the resolution by n bits, you need to
sample it 4n times faster.

In our case, we want 1KHz, because that’s what USB report rate we
aim for, so that each report we send to the host computer contains the
latest ADC measurements.

So, to increase 2 bits to 14bit, we need to run the ADC sampling at
16KHz. But we only have one physical ADC module that is capable of
1000ksps, and 16 channels.

 16 × 16K = 256K

We are still well under the 1000ksps.

But how about pushing it up to 16bits? Let’s do a little different
calculation this time. One channel at 1K, requires the following.

 44 × 1K = 256K

 1000K ÷ 256K = 3.09026

The answer is that we can only run 3 channels at 16bit. 3 x 256K =
768K. That’s still well under 1000ksps.

!
Warthog Is 16bit?!

16bit at what sampling rate? 16bit at 1KHz? Really?

�8

Parameter Symbol Test
Condition

Min Typ Max Units

Sampling
Rate

Ct Slow mode
Fast mode

600
200

1000
330

µs
µs

Parameter Symbol Test
Condition

Min Typ Max Units

ADC
Resoluton
on the raw
signals X, Y,
and Z

RADC Slow mode
Fast mode

15
14

bits
bits

August 2, 2014

The Warthog uses the MLX90333 chip running at digital mode, in a 3-
wire SPI configuration.

Here’s what the spec. sheet of MLX90333 says.

!
In fast mode, MLX90333 can do 14bit at max 5000 samples per
second (1 / 200 µs). In slow mode, MLX90333 is capable of doing
15bit, but at max 1666 (1 / 600 µs)samples per seconds.

The Warthog’s USB report rate is 1000Hz (i.e. 1ms), see the
screenshot below.

So,
if they use slow mode, 14bit, to bump up 2 bits, at 1KHz report rate,
they would need 42 x 1KHz = 16KHz, but there is only 5000KHz
available. Not possible!

If they use fast mode, 15bit, to bump up 1 bit, at 1KHz report rate,
they would need 4 x 1KHz = 4KHz, but there is only at best 1666Hz
available. Not possible again!

!
The spec. sheet also says its Serial Output Resolution is Theoretical —
jitter free 16 bits. How?

�9

August 2, 2014

Also note that we are calculating the sampling rate from the typical
case, we are not even use the worst case scenario (the max column of
values).

!
The SPI mode digital output of MLX90333 indeed outputs 16bit, 2
bytes. But that does not necessarily mean that all 16bit are meaningful.
If you don’t believe me, try this.

Open your Device Analyzer in Target. And slowing move the stick and
closely watch one of the axis value and see if you can get every value
from 0 to 65535. I tried that, I could never get odd numbers except
65535 (or cannot get even numbers).

What does that mean? It means most likely somebody got 15bit values
(or even 14bits) and shifted left to 16bit (i.e. multiply it by 2), so the
last bit is always 0, hence always even numbers.

Still don’t believe me? Ok, go find the JoyResTest.exe program and
run it against Warthog and see what you get. Below is what I got.

See? Told you, it’s at best 15bits!

�10

August 2, 2014

!
I said the same thing on SimHQ when Warthog just came out, nobody
could dispute it, yet Thrustmaster continues to claim 16bit resolution
and people continue to quote Warthog is 16bit.

!
I said my piece, you be the judge.

�11

