
Jonah Tsai

Hempstick Cougar
Demo
v.1.0.1

Overview
1

The purpose of this demonstration project & document is to show you how to use Hemp-
stick to upgrade ThrustMaster Cougar’s outdated electronics.

I will demonstrate how to configure a stock Hempstick source code for a Cougar, and wire
up some representative potentiometers for X, Y, and Z axes, which are the two stick axes,
and the throttle axis. Then we will demonstrate wiring up to a real Cougar stick and TQS
throttle to a SAM4S XPLAINED Pro (XPro for short) board.

Of course, again, I will omit the critical part of how to get TARGET to accept Hempstick, in
fear of dreaded US DMCA law. Unfortunately, I live in the United States, I must obey the
laws of the land of the brave or risk getting sued.

Objectives

The TM Cougar was release in the year 2002. In those days, 24MHz, 8 bit MCUs with 10
bit ADCs are the norm. Today, 120Mhz, 32bit ARM processor with 12bit ADCs are the
norm. The current off-the-shelf controllers for the “simmers” are still running at 8 bit,
24Mhz, but with an upgraded 12bit ADC.

At the end of the this demo project, you will end up with a SAM4 XPro board with a
burned firmware, and a couple of wiring tables ready for your Cougar upgrade project. The
physical wiring and case modification etc. is up to you. This is because, I do not know

1

where you are going to locate your Hempstick board. There is not enough space in the
stick base, unless you make a new base cover to make more room. There seems to be
enough space to cramp in the SAM4S XPro board, but it’s a very very tight fit. In addition,
even if you do put it in the throttle base, you would have to run a long cable to the stick
base. That means running two long analog wires to the main X and Y axes, plus 5 wires for
the stick, plus the Vcc and GND lines. The two long signal lines to the X & Y axes are a bit
worrisome... they WILL pick up noises. That’s, I guess, why the new Warthog have two
separate MCUs one for the stick, one for the throttle. This is a far superior arrangement.
So, even though I am demonstrating how to use one Hempstick SAM4S XPro board to
connect both the Cougar stick & throttle, I really recommend that you use 2x Hempstick
SAM4S XPro boards, one for the stick, one for the throttle. If you want, add one more for
the rudder. It’s USD $29 apiece... for the price of a BU0836X, you can almost pay for all 3x
of the SAM4S XPro boards.

Assumptions
We will assume that you have already installed Atmel Studio v.6.2 or later by following the
instructions in the Hempstick User Guide. We will also assume that you have already down-
loaded the libHemp and Hempstick and opened them in a directory on disk (both must be
under the same directory to avoid having to change the project structure inside Atmel Stu-
dio).

I will also assume that you have read through the Hempstick Rudder Demo document, so I
will not repeat what you would have learned from that document.

I will also assume that you have completed the steps in the Preparation of the Hempstick
Rudder Demo document. That is, you have tested your Atmel Studio, EDBG debugger via
USB, and have downloaded a fresh copy of libHemp and Hempstick source code. If you
have not, please refer to that document and follow the steps in the Preparation chapter.

In this document, we will not explain the basic concepts and the why things are done that
way. These are explained in the User’s Guide and the Rudder Demo documents. We will

2

http://www.hempstick.org/download/manual/RudderDemo.pdf
http://www.hempstick.org/download/manual/RudderDemo.pdf

be very brief in describing what needs to be done specifically for Cougar and why doing
this way with Cougar. No more spoon feeding from the corn fed Yanks.

What You Need
• Atmel Studio v.6.2 or newer installed.

• MSysGit & SmartGit (optional)

• libHempstick & Hempstick source code

• An Atmel SAM4S XPLAINED Pro board

• A Thrustmaster Cougar, ready to be operated on.

• Some wires and connectors to connect the potentiometers to the SAM4S XPLAINED Pro
board

• Tools to do the wiring (that depends on the methods you decide to do the wiring)

3

Cougar Axes & Buttons Wiring &
Mapping

2

In this chapter we will examine what axes & buttons Cougar has internally and what we in-
tend to do with them, how to connect them to a Hempstick board, and then produce an
axis mapping and a button mapping for Hempstick.

Wiring
Potentiometer Wiring

Cougar
Axis Name

USB Axes
Name

ADC Channel SAM4S Pin
SAM4S XPro

pin

Throttle
Connector 261

Position

Stick X X 0 PA8 Ext1 : 3 n/a

Stick Y Y 4 PB0 Ext2 : 3 n/a

Throttle Z 5 PB1 Ext2 : 4 n/a

Radar
Cursor X

Rx 7 PB3 Ext 3 : 14 20

Radar
Cursor Y

Ry 8 PA21 Ext 2 : 13 19

RNG Rz 9 PA22 Ext 2 : 14 13

ANT Slider 13 PC29 Ext 3 : 3 14

4

Don’t forget to wire up Vcc & GND pins for the 261 header!

GND 5 10 12 16 18 22

Vcc 15 21

The following is the mapping for the header 261 buttons.

SAM4S
Pin

Permanent USB
Button Number

(0-index)

SAM4S XPro
Header Pin

Cougar Header 261
pin (1-index)

Corresonding GND pin on
header 261 (1-index)

PA24 18 Ext 1: 5 17 (Enable) 18

PA25 19 Ext 1: 6 1 (VHF) 5

PA23 20 Ext 1: 7 2 (UHF) 5

PA1 21 Ext 1: 9 3 (IFF IN) 5

PA11 22 Ext 1: 15 4 (IFF OUT) 5

PA13 23 Ext 1: 16 11 (Uncage) 12

PA12 24 Ext 1: 17 6 (Dogfight AFT) 10

PA14 25 Ext 1: 18 7 (Dogfight FWD) 10

PC19 26 Ext 2 : 7 8 (SPD BRK AFT) 10

PC27 27 Ext 2 : 10 9 (SPD BRK FWD) 10

We are not using any original Cougar PCBs. We ditch them altogether. You wire directly
between the SAM4S pins and the Cougar pots and buttons. I have decided to omit the 3
rudder potentiometers because DirectInput can only take up to 8 axes and with the 3 rud-
der axes we would have total of 9 axes, even though Hempstick SAM4S XPro can support
up to 16 ADC channels.

For the potentiometers, you need to wire the 3.3V power to one side, the GND to the
other, and the the middle to the ADC channel pins.

CAUTION: The SAM4S MCU is a 3.3V device. NO 5V!!!

5

The Hempstick SAM4S XPro uses an on-die hardware SSC module to read the TMStick.
However this requires some special wiring.

SAM4S
Pin

Name

SAM4S XPro
Header Pin

Connects to Stick PS2 Pin SSC Signal Name

PC26 Ext 2 : 9 Ext 2 : 8 2

PA20 Ext 2 : 8 Ext 2 : 9 2 RF

PA18 Ext 1: 4 4 RD

PA19 Ext 1 : 8 3 RK

Vcc 3.3V 1

GND 5

PC26 (Ext 2 : 9) is the Timer Clock TIAO5, i.e TC1 channel 2. This is used to generate a
1KHz to trigger the SSC module. PA20 pin is the SSC trigger pin RF. This signal is also
used as the lock signal to the 3x cascaded 8 bit jam type parallel in serial out buffer on
TMStick. The PA18 pin is the read pin of the SSC when data is shifted out of the TMStick
buffer chip. The PA19 pin is the SSC clock pin. It sends the clock pulse for shifting out se-
rial bits.

TMStick PS2 Connector Pinout

6

TMStick Color Code for Cougar

TMStick Color Code for Warthog

Please note that the color code on the PS2 connector is based on my samples of Cougars
and Warthogs, yours might not be exactly the same.

That’s all the wiring you need.

Shortcut Using Preconfigured Set of Configuration Files

7

Pin Color

1 Brown

2 Red

3 Orange

4 Yellow

5 Green

Pin Color

1 Black

2 Brown

3 Red

4 Orange

5 Yellow

If you don’t want to change anything, but just want it to work with a set of preconfigured
files, ignore the following Axis Mapping & Button Mapping sections, and do the followings.

1. Go to the src/config/Cougar/ directory, copy all files there and paste into src/config/ di-
rectory, overwrite all the files there.

2. Launch Atmel Studio, open the Hempstick.atsln file, select the Hempstick_SAM4S_X-
PLAINED_Pro project.

3. Plug in the SAM4S XPro board’s Debug USB and SAM4S USB port to the host com-
puter.

4. Click [Start Debugging...] button or do menu [Debug] -> [Start Without Debugging].

This will compile the whole firmware with the set of preconfigured files, and burn the firm-
ware to the SAM4S XPro board, if there is no error. If everything goes well, the new Hemp-
stick with Cougar will show up in your Devices & Printers page.

If you want to do some light configuration, then read on.

Axis Mapping
Please consult the axes mapping table and make sure the axis mappings in the file
src/config/conf_hempstead.h match.

#ifdef CONF_BOARD_SAM4S_XPLAIN_PRO

 .channel_flags = {ADC_CHANNEL_ENABLE_MASK, 0, 0, 0, ADC_CHANNEL_ENABLE_MASK, ADC_CHAN-

NEL_ENABLE_MASK, 0, ADC_CHANNEL_ENABLE_MASK, ADC_CHANNEL_ENABLE_MASK, ADC_CHAN-

NEL_ENABLE_MASK, 0, 0, 0, ADC_CHANNEL_ENABLE_MASK, ADC_CHANNEL_ENABLE_MASK, 0},

 .channel_mapping = {0, UINT8_MAX, UINT8_MAX, UINT8_MAX, 1, 2, UINT8_MAX, 3, 4, 5, UINT8_MAX, UINT8_MAX,

UINT8_MAX, 6, 7, UINT8_MAX},

#elif defined(CONF_BOARD_ARDUINO_DUE)

8

First of all there is an ADC enabling table, the .channel_flags. This, as usual, is a C 0-
indexed array. Element 0 is for ADC0 channel. Element 1 is for ADC1 channel, etc. You use
this array to enabled each of the 16 ADC channels.

The second table is the ADC channel to USB axis mapping, .channel_mapping. The values
are only used if the corresponding channel is enabled. The values specify which ADC chan-
nels map to which USB axis, 0-index again.

Button Mapping

There two kinds of buttons. One is the real buttons, each hardwired to an MCU pin en-
abled for GPIO. The other kind is synthesized buttons like the ones from TMStick. These
are basically fake buttons that we can pull out of the thin air. You don’t have to have any
real button, USB does not care. It only care whether a bit position in the report it receives
has a 1 or 0 value. Even though the TMStick has real physical buttons, they are not really
hardwired to MCU pins or a matrix. If you use a matrix of button, this would be the kind of
buttons you implement.

For hardwired buttons, you need to do two things.

1. Enabled the MCU pin as GPIO input, with a pull-up resistor, or pull-down resistor, and
you need to configure it to use the built-in hardware debouncer.

2. You need to specify which USB button bit each of these pins map to.

For #1 above. You need to modify the hw_pin_configuration_table in the file
src/config/conf_hempstead.c file.

hw_pin_configuration_table g_hw_pin_conf_table = {

 .mutex = NULL,

9

 .pin = {

 ...

 {.pin = PIO_PA24_IDX, .conf = HW_PIN_ENABLE_MASK, .mode = (PIO_TYPE_PIO_INPUT | PIO_PULLUP |

PIO_DEBOUNCE)},

 {.pin = PIO_PA25_IDX, .conf = HW_PIN_ENABLE_MASK, .mode = (PIO_TYPE_PIO_INPUT | PIO_PULLUP |

PIO_DEBOUNCE)},

 {.pin = PIO_PA23_IDX, .conf = HW_PIN_ENABLE_MASK, .mode = (PIO_TYPE_PIO_INPUT | PIO_PULLUP |

PIO_DEBOUNCE)},

 {.pin = PIO_PA1_IDX, .conf = HW_PIN_ENABLE_MASK, .mode = (PIO_TYPE_PIO_INPUT | PIO_PULLUP |

PIO_DEBOUNCE)},

 {.pin = PIO_PA11_IDX, .conf = HW_PIN_ENABLE_MASK, .mode = (PIO_TYPE_PIO_INPUT | PIO_PULLUP |

PIO_DEBOUNCE)},

 {.pin = PIO_PA13_IDX, .conf = HW_PIN_ENABLE_MASK, .mode = (PIO_TYPE_PIO_INPUT | PIO_PULLUP |

PIO_DEBOUNCE)},

 {.pin = PIO_PA12_IDX, .conf = HW_PIN_ENABLE_MASK, .mode = (PIO_TYPE_PIO_INPUT | PIO_PULLUP |

PIO_DEBOUNCE)},

 {.pin = PIO_PA14_IDX, .conf = HW_PIN_ENABLE_MASK, .mode = (PIO_TYPE_PIO_INPUT | PIO_PULLUP |

PIO_DEBOUNCE)},

 {.pin = PIO_PC19_IDX, .conf = HW_PIN_ENABLE_MASK, .mode = (PIO_TYPE_PIO_INPUT | PIO_PULLUP |

PIO_DEBOUNCE)},

 {.pin = PIO_PC27_IDX, .conf = HW_PIN_ENABLE_MASK, .mode = (PIO_TYPE_PIO_INPUT | PIO_PULLUP |

PIO_DEBOUNCE)}

 }

 ...

For each entry, you specify which pin you wish to configure. You enable it, and then spec-
ify the flag (or mode) the pin should be configured with. The above table are the button
pins that need to be configured for hardwired buttons for a Cougar. Please cross check
this table with the header 261 button table listed previously.

The total number of entries (rows) must also be specified in the
src/config/conf_hempstead.h.

// PIN Configuration

#ifdef CONF_BOARD_SAM4S_XPLAIN_PRO

define CONF_NUM_PINS 23

10

This number must match exactly the number of rows in the above table. If they don’t
match, you will most likely have a crash.

This is yukky! It will change in the future. But for now, make sure they match.

Next, we must tackle the pin to USB button mapping. You must specify which GPIO pin
value should be mapped to which USB button. Any voltage level change event will trigger
the button task to read the pin value and set the corresponding USB button bit accord-
ingly. For Cougar, according to the button mapping table listed previously, you should
have the button mapping as the following in src/config/conf_hempstick.c.

rtos_button_data_t g_rtos_button_data = {

 .data = NULL,

 .num_button = 0,

 .hat_data = NULL,

 .num_hat = CONF_NUM_HAT,

 .mutex = NULL,

 .rtos_internal_task_semaphore = NULL,

 .rtos_task_semaphore = NULL,

#ifdef ID_PIOA

 .ports[0].button_conf[0].flags = 0x0000,

 .ports[0].button_conf[1].flags = RTOS_BUTTON_PIN_ENABLED_MASK, .ports[0].button_conf[1].data_position = 21,

 .ports[0].button_conf[2].flags = 0x0000,

 .ports[0].button_conf[3].flags = 0x0000,

 .ports[0].button_conf[4].flags = 0x0000,

 .ports[0].button_conf[5].flags = 0x0000,

 .ports[0].button_conf[6].flags = 0x0000,

 .ports[0].button_conf[7].flags = 0x0000,

 .ports[0].button_conf[8].flags = 0x0000,

 .ports[0].button_conf[9].flags = 0x0000,

 .ports[0].button_conf[10].flags = 0x0000,

 .ports[0].button_conf[11].flags = RTOS_BUTTON_PIN_ENABLED_MASK, .ports[0].button_conf[11].data_position = 22,

 .ports[0].button_conf[12].flags = RTOS_BUTTON_PIN_ENABLED_MASK, .ports[0].button_conf[12].data_position = 24,

 .ports[0].button_conf[13].flags = RTOS_BUTTON_PIN_ENABLED_MASK, .ports[0].button_conf[13].data_position = 23,

 .ports[0].button_conf[14].flags = RTOS_BUTTON_PIN_ENABLED_MASK, .ports[0].button_conf[14].data_position = 25,

 .ports[0].button_conf[15].flags = 0x0000,

 .ports[0].button_conf[16].flags = 0x0000,

11

 .ports[0].button_conf[17].flags = 0x0000,

 .ports[0].button_conf[18].flags = 0x0000,

 .ports[0].button_conf[19].flags = 0x0000,

 .ports[0].button_conf[20].flags = 0x0000,

 .ports[0].button_conf[21].flags = 0x0000,

 .ports[0].button_conf[22].flags = 0x0000,

 .ports[0].button_conf[23].flags = RTOS_BUTTON_PIN_ENABLED_MASK, .ports[0].button_conf[23].data_position = 20,

 .ports[0].button_conf[24].flags = RTOS_BUTTON_PIN_ENABLED_MASK, .ports[0].button_conf[24].data_position = 18,

 .ports[0].button_conf[25].flags = RTOS_BUTTON_PIN_ENABLED_MASK, .ports[0].button_conf[25].data_position = 19,

 .ports[0].button_conf[26].flags = 0x0000,

 .ports[0].button_coßnf[27].flags = 0x0000,

 .ports[0].button_conf[28].flags = 0x0000,

 .ports[0].button_conf[29].flags = 0x0000,

 .ports[0].button_conf[30].flags = 0x0000,

 .ports[0].button_conf[31].flags = 0x0000,

#endif

#ifdef ID_PIOC

 .ports[2].button_conf[0].flags = 0x0000,

 .ports[2].button_conf[1].flags = 0x0000,

 .ports[2].button_conf[2].flags = 0x0000,

 .ports[2].button_conf[3].flags = 0x0000,

 .ports[2].button_conf[4].flags = 0x0000,

 .ports[2].button_conf[5].flags = 0x0000,

 .ports[2].button_conf[6].flags = 0x0000,

 .ports[2].button_conf[7].flags = 0x0000,

 .ports[2].button_conf[8].flags = 0x0000,

 .ports[2].button_conf[9].flags = 0x0000,

 .ports[2].button_conf[10].flags = 0x0000,

 .ports[2].button_conf[11].flags = 0x0000,

 .ports[2].button_conf[12].flags = 0x0000,

 .ports[2].button_conf[13].flags = 0x0000,

 .ports[2].button_conf[14].flags = 0x0000,

 .ports[2].button_conf[15].flags = 0x0000,

 .ports[2].button_conf[16].flags = 0x0000,

 .ports[2].button_conf[17].flags = 0x0000,

 .ports[2].button_conf[18].flags = 0x0000,

 .ports[2].button_conf[19].flags = RTOS_BUTTON_PIN_ENABLED_MASK, .ports[2].button_conf[19].data_position = 26,

 .ports[2].button_conf[20].flags = 0x0000,

 .ports[2].button_conf[21].flags = 0x0000,

12

 .ports[2].button_conf[22].flags = 0x0000,

 .ports[2].button_conf[23].flags = 0x0000,

 .ports[2].button_conf[24].flags = 0x0000,

 .ports[2].button_conf[25].flags = 0x0000,

 .ports[2].button_conf[26].flags = 0x0000,

 .ports[2].button_conf[27].flags = RTOS_BUT-

TON_PIN_ENABLED_MASK,

.ports[2].button_conf[27].data_position = 27,

 .ports[2].button_conf[28].flags = 0x0000,

 .ports[2].button_conf[29].flags = 0x0000,

 .ports[2].button_conf[30].flags = 0x0000,

 .ports[2].button_conf[31].flags = 0x0000,

#endif

Please double check these entries match
the mapping table listed previously.

Also, please make sure the TMStick task is
enabled in the src/config_hempstead.h.

#define CONF_ENABLE_TM_STICK_IN_BUTTON

 1

When the TMStick is enabled, It will map
the stick buttons to the first 19 or 20 but-
tons, plus an 8 way Hat Switch.

Here’s the table of TMStick buttons for
your reference. The buttons must be
mapped to USB in exactly in the following
listing, otherwise if you use TARGET, the
button name constants in TARGET will get
you the wrong USB buttons.

Position
in

Windows

Position
in

Hempstick
Internally

Cougar
Stick

Function

Warthog
Stick

Function

1 0 Trigger 1st
Stage

Trigger 1st
Stage

19 1 N/C CMS Push

20 2 N/C N/C

2 3 WPN/REL WPN/REL

3 4 Nose
Wheel

Nose
Wheel

4 5 Pinky Shift Pinky Shift

5 6
Master
Mode

Control

Master
Mode

Control

13

6 7 Trigger 2nd
Stage

Trigger 2nd
Stage

HAT N 8 Trim Up Trim Up

HAT E 9 Trim RWD Trim RWD

HAT S 10 Trim Dn Trim Dn

HAT W 11 Trim LWD Trim LWD

7 12 TMS Up TMS Up

8 13 TMS RWD TMS RWD

9 14 TMS Dn TMS Dn

10 15 TMS LWD TMS LWD

11 16 DMS Up DMS Up

12 17 DMS RWD DMS RWD

13 18 DMS Dn DMS Dn

14 19 DMS LWD DMS LWD

15 20 CMS Up CMS Up

16 21 CMS RWD CMS RWD

17 22 CMS Dn CMS Dn

18 23 CMS LWD CMS LWD

14

Before you compile and burn the firmware, be sure to change the VID/PID and device
name to what you like in the file src/config/conf_usb.h. Put your call sign on the device
name and have it show up in Windows Devices & Printers.

However, I cannot tell you which VID/PID to use. You must chose wisely to avoid conflicts
in your OS. A good place to find a large list of VID/PID is the Linux USB ID Repository. Go
there, find one that is suitable and program yours.

A word of advise on choosing the VID/PID pair. It’s probably best to choose one that is a
USB HID class device that requires no custom drivers to be loaded in the Windows (or
other OS). This is because the VID/PID pair is used on Windows to identify which driver
needs to be loaded to drive the newly plugged in USB device. If you choose a pair that
has a custom driver that come OOTB with Windows, Windows might actually load it for
your Hempstick and attempt to send custom data for that VID/PID to Hempstick. Obvi-
ously Hempstick will not understand that custom data output to it. Even worse, that cus-
tom driver might expect certain USB endpoints in the USB device product it think it is con-
necting to. A badly written driver might actually crash, and drag down the whole OS with
it, because these are kernel mode drivers. You very likely will get a blue screen for a ker-
nel mode driver crash.

Remember, when you use other people’s VID/PID, you are masquerading as that USB de-
vice. The behavior of Hempstick and that one must be similar enough for it to work right.
Simple enough, just choose another joystick’s VID/PID that you don’t have.

That’s it. Compile, burn, and Test.

Again, I cannot tell you how to make Hempstick show up in Target. But it’s possible. I
have tested it and found it working fine even in the TARGET Device Analyzer. I must also
warn you, that it might be illegal under DMCA to disseminate the information on how to
use Hempstick or any other USB device in TARGET. Although it’s not illegal for you to pro-
gram Hempstick with other people’s VID/PID, it might be illegal to use TARGET in such an

15

http://www.linux-usb.org/usb-ids.html
http://www.linux-usb.org/usb-ids.html

unauthorized manner. I don’t know, I am not a lawyer. I am just a bit cautious about step-
ping out of line against the LAW.

I would also highly recommend that you wire up one thing, test, and the wire up another.
For instance, start with the X axis. Wire up just 3 wires to the X pot, and see if that works.
If it works, then, wire up more pots and test. This way, you don’t end up sorting with a tan-
gle of mess of wires.

I would also recommend using a ribbon cable and a 24 socket IDC header to connect to
the throttle header 261 and split the other end to connect to the SAM4S XPro board. For
this split ends, you’d either need to solder them or use single header connector sockets
like this one,
http://www.digikey.com/product-search/en?x=0&y=0&lang=en&site=us&keywords=A2696
2.

Again, how you are going to wire it up is up to you.

16

http://www.digikey.com/product-search/en?x=0&y=0&lang=en&site=us&keywords=A26962
http://www.digikey.com/product-search/en?x=0&y=0&lang=en&site=us&keywords=A26962
http://www.digikey.com/product-search/en?x=0&y=0&lang=en&site=us&keywords=A26962
http://www.digikey.com/product-search/en?x=0&y=0&lang=en&site=us&keywords=A26962

