
Hempstick User’s
Guide

v.1.0.3

Jonah Tsai

A USB JOYSTICK CONTROLLER

Copyright

i

© 2013 by Jonah Tsai.

This work is licensed under the Creative Commons Attribution-
NonCommercial-ShareAlike 3.0 Unported License.

Cover photo is provided by Mr. Steve Jurvetson under Creative Common
Attribution 2.0 Generic license (CC By 2.0).

Preface, chapter, and section title photos are attributed to NASA.

http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US

Preface

The name Hempstick is simply a play of my screen
name, Hempstead. My screen name simply came from
the street name my apartment used to be in Pittsburgh.

iii

Hempstick is a general purpose USB HID controller. It
came from the desire to produce my own custom
USB physical controllers like instrument panels,
rudders, joysticks, etc., but I cannot find a suitable
USB controller board on the market. For instance, I
want one that will read Thrustmaster’s Cougar/
Warthog sticks. Also, I want it to be able to read
Melexis’ MLX90363 Hall Effect Sensors in digital SPI
mode and more, but again, I cannot find one either.
So, ever as a born tinkerer, I write my own.

Some might say, there sure would be some available
software out there that already does USB joysticks/
controllers! Why should I bother with Hempstick at all?
For instance, Arduino has one! Yes, it does. But the
existing ones I found are way too simplistic. They use
a simple loop to do all the work, i.e. read the ADC,
buttons status, report them to the USB host, then
sleeps for a specified amount of millisecond and do
the loop again, forever. What’s wrong with that?

Nothing, if that’s all it does. What happens if you want
the report rate to be 1000Hz, and also need to read 15
SPI Hall Effect Sensors and each report can take up to
5 ms, then read all the buttons, and 8 ADC channels?
You can no long meet the time constraint of 1ms
(1000Hz) report rate. What if I also want to read gyro,
accelerometer, and magnetometer for head tracking in
the future? Can you make the MCU do all the above
within 1ms? Even if your MCU is fast enough to do all
those, your sensors might not! In essence, we need
multi-tasking for more complex USB controller that
can do many other things other than just reading
buttons and ADC values.

That calls for an preemptive multitasking operating
system. Usually, for embedded systems, that would be
a Real Time Operating System (RTOS). I have selected
the FreeRTOS as the OS for the Hempstick, because
it’s free, it’s simple, and it’s supported by the Atmel

iv

Software Foundation, which supports the MCUs I am
most familiar with.

So, the Hempstick in the background has a task
reading the configured ADC values, another task
reading the TM stick if configured, and yet another
task reading buttons. What happens when we also
want to read multiple MLX90363? Well, there is
another task running in the background reading the
MLX90363s. What more sensors? Add more tasks!

In essence, it is designed to be modular, flexible and
expandable. Sure, there are joysticks that do all these
(well, TM’s Warthog sure does all these!), but I have yet
to find one that is OpenSourced.

Sure, that was the original idea of writing Hempstick --
I wrote it for myself! But in the long process of learning
digital design, the more I learn the more I realize that
there is no magic in designing with today’s highly
integrated MCUs. There is just a tremendous amount

of low level programming, and programming is
something I have a knack of and make a living out of
it. Why couldn’t anybody do it? Well, not everybody is
born with a knack in programming, not to mention not
everybody wants to spend evenings carefully reading
the dry, voluminous (1000+ pages per MCU is the
norm), and often confusing and unclear MCU
specification sheets. But what if the programming part
and the careful reading of MCU specification sheets
are taken out of the equation? After all, regular
desktop and server operating system APIs do exactly
that! What if I can make a design that is modular and
flexible and hides all the gory details (if not all) of
controlling the MCU and its peripherals from the non-
programmers? Can I apply good software engineering
design to the construction of the Hempstick and
isolate the details into their own modules so that it not
only becomes easy for me to cobble together different
USB controllers and make it simple to configure all
those sensors and peripherals needed to construct a
USB controller?

v

That is, the Hempstick software is also designed from
the ground up to allow the non-software-engineers to
do some modifications and produce customized USB
firmware.

Read Chapter 1 the Super Quick Start Guide to see
how easy it is for non-software-engineers to compile
and burn a USB firmware into a blank SAM4S XPLAIN
Pro board and produce a functioning Hempstick!

Once you get to see how easy it is for you to build a
Hempstick from the source code and have it up and
running, I hope you will be itching for custom
modifications and producing some USB controllers
that you can call your own, like putting your own call
sign on the stick!

You can use it to build your own instrument panels,
flight instruments, helo collectives, or simply turn your
old game port rudder into a USB rudder. Or may be,
you want to do what I often say -- “With this, I can turn
a wooden stick into a USB controller.” It’s up to you.

Chapter 1

Overview

The Hempstick is an OpenSource general-purpose
USB HID joystick firmware.

It is designed to be open, modular, flexible, and
suited for simple modifications, like buttons, ADC,
TMStick, and modifications of USB VID/PID/device
name, etc. by end users to produce custom USB
joystick controllers.

7

The end users producing custom USB firmware? Yes, you read
me right. And by end users, I mean Joe-Six-Packs. And, I really
mean the end users modifying the source code, compiling a new
firmware and burn it onto the embedded MicroControllers (MCUs)
themselves.

But I am not a programmer! You may scream! No, don’t be
scared, and I am not crazy. By modifying the source code, I really
mean modifying the configuration, like which pin goes with which
button, and maybe a little simple boilerplate assignment
statements that everybody can copy-paste-n-change, and then
press a button in the Integrated Development Environment (IDE)
to compile and burn the the firmware to the MCU.

Trust me, anybody can do it.

Furthermore, if you have a knack in programming, and you really
want to understand how it works, modify it, producing custom
Hempstick controllers, or adding new features, the Hempstick is
designed to be modular to be able to accommodate that. For this,
I did not design it for you. I designed it like this for myself so I can
add new features I want without much fuzz. You just get to tag
along and benefit from it.

Features
1. Supports both OpenSourced Arduino Due/X board, and some

selected Atmel Evaluation Kits hardware boards.

2. Max. 16 Analog Digital Converter channels.

3. Max. 32 buttons (Windows’ DirectInput limitation).

4. Able to read buttons onThrustMaster’s Cougar/Warthog sticks.

5. 12-bit hardware ADC, improved to 14-bit with oversampling.

6. Software average noise filter for ADC.

7. Built-in hardware debouncers and pull-up resistors.

8. No ghosting, no shadowing, because no button matrix
arrangement, i.e. you can press all 32 buttons simultaneously if
you want. We simply connect each button directly to an MCU
pin. That is, we brute force the problem away with bigger
MCUs.

9. Software debouncers for TM sticks.

10. Built-in pull-up resistors.

11. Contains a Real-Time Operating System (FreeRTOS), so that
it can accommodate more complex features and provides
flexibility for more modular design. Allows me to design it in a
modular way to abstract out the configuration for end users to

8

modify them without requiring deep embedded programming
knowledge in order to produce a custom joystick controller.

12. End users can easily change the configurations like USB VID/
PID, manufacturer, device name, button/ADC assignments etc.
to produce truly their own custom controllers.

9

Planned Features
1. Read and program MLX90363 Hall Effect Sensors in pure

digital SPI mode (current works well with analog output Hall
Effect Sensors using ADC).

2. PWM output for controlling LED dimming.

The matrix problem arise mainly due to using small MCU without
enough pins to serve the number of buttons. It’s a very cleaver
way of doing more with less. But it has the ghosting and
shadowing problems. Well, there is no free lunch, like they said!

We basically solve the problem by using bigger MCUs that have
enough digital pins to connect to the number of MCUs we want.
This approach has some additional benefits.

1. Modern MCUs’ digital pins these days come built-in with
hardware debouncers. So, by connecting each button directly
to a digital pin, we eliminate the need to wire up external
hardware debouncers, or using a software debouncer in the
firmware.

2. Modern MCUs also come with pull-up resistors for each of
their digital input pin. By connecting each button directly to a
digital input pin, we also eliminate the need to wire up external
pull-up resistors.

These simplifies the end-users wiring tremendously. Big deal?
You say? Not such a big deal really I would agree. But it does
save a lot of wirings. You can just directly connect a button to a
digital input pin and the ground pin. Total 2 wires instead of
having to wire the digital input pin to a breakout board with
resistor arrays on it, and then wire it up to your buttons. You cut
the wiring by half, and saves a breakout board.

Cutting the wiring job by half, you basically also eliminated the
chance of wiring error by half! That is a big deal for me for any
non-trivial pit building project!

How difficult is it to get a Hempstick up and
running?
Not difficult at all. For a pre-configured Hempstick, all you have to
do is the followings.

1. Purchase an Arduino Due/X board (USD $50), or an Atmel
SAM4S XPLAIN Pro board (USD $39), not from me!

2. Download and install Atmel Studio (free as in beer).

3. Download libHemp.zip, Hempstick.zip, and unzip them.

10

4. Connect the board via USB.

5. Launch Atmel Studio, open the Hempstick solution, select the
desired pre-configured project, and press the “Run” button.

That’s it! I am sure you are capable of installing a software,
download some zip files, connect a board via USB ports, open a
file, and press a “Run” button! If you can’t even do these, then
Hempstick is not for you.

Of course, after the USB Joystick controller board is burned, you
will still need to wire it up to all your pots, sensors, buttons, etc.
Those, you are on your own. I can provide some guidance, but
since I don’t know your “custom” design, I really can only provide
some general recommendations only. But I will provide detailed
pin outs for pre-configured Hempstick that I support.

In the first few following chapters, I will first provide step-by-step
instructions quick start guides, with screenshots, to install
needed software, and produce a working Hempstick boards.

If you are familiar with embedded programming or general
software programming, you may want to just skimp through the
quick start guides in the first few chapters just to see what needs
to be done for producing a pre-configured Hempstick.

In the later chapters, I will provide instructions on how to modify
and produce custom Hempsticks that you can call your own!

Chapter 2

Hempstick
Super Quick
Start Guide
This Super Quick Start Guide will show you what
you will need and do to create a Hempstick board
from a blank Atmel SAM4S XPLAIN Pro board.

This chapter contains step-by-step instructions on
what software to download and install, as well as
what needs to be done to compile from source
code and burn the resulted firmware to the board,
resulting in a fully functional Hempstick board.

For the hardware board for the Super Quick Start Guide, we
choose the Atmel SAM4S XPLAIN Pro board for the reason that
it contains an Atmel EDBG (Embedded Debug) chip allowing us
to program the on-board MCU (MicroController Unit) without an
additional hardware programmer or debugger.

Hardware Needed:

• An Atmel SAM4S XPLAIN Pro board, http://store.atmel.com/
PartDetail.aspx?q=p:10500344;c:100113#tc:description,
USD $39.

• 2x micro USB to USB cable.

Software Needed:

• Windows OS (XP, Vista, or Win7, preferably Win7).

• Atmel Studio, http://www.atmel.com/tools/
ATMELSTUDIO.aspx.

• Hempstick source code, at GitHub libHemp-master.zip and
Hempstick-master.zip.

Section 1

What You Need

12

http://store.atmel.com/PartDetail.aspx?q=p:10500344;c:100113#tc:description
http://store.atmel.com/PartDetail.aspx?q=p:10500344;c:100113#tc:description
http://store.atmel.com/PartDetail.aspx?q=p:10500344;c:100113#tc:description
http://store.atmel.com/PartDetail.aspx?q=p:10500344;c:100113#tc:description
http://www.atmel.com/tools/ATMELSTUDIO.aspx
http://www.atmel.com/tools/ATMELSTUDIO.aspx
http://www.atmel.com/tools/ATMELSTUDIO.aspx
http://www.atmel.com/tools/ATMELSTUDIO.aspx
https://github.com/JonahTsai/libHemp/archive/master.zip
https://github.com/JonahTsai/libHemp/archive/master.zip
https://github.com/JonahTsai/Hempstick/archive/master.zip
https://github.com/JonahTsai/Hempstick/archive/master.zip

Atmel Studio is an IDE (Integrated Development Environment). It
contains the full suite of development tools needed to edit,
compile, program, and debug firmware on Atmel MCUs. For the
purpose of this Super Quick Start Guide, that is all the software
you will need, in additional the your favorite browser.

This section will show you the step-by-step instructions on how
to install Atmel Studio. If you are familiar with it, then skip over
this section.

Once you have downloaded the latest Atmel Studio software
(registration might be required for the download), launch the
installer.

1. Here, it says that it will need to install two additional
software. Click [Install].

Section 2

Installing Atmel Studio

13

2. Uncheck the [Yes, send information to the mothership...]
and click [Next].

3. Check [I have read and accept the license terms.] and
click [Next].

4. Check [Full] and click [Install].

5. This will install everything Visual Studio Shell needs including
the proper version of .NET if you don’t already have it. Wait...

14

6. Visual Studio Shell installed correctly. Don’t worry about the
broken graphics. It is ok. Click [Finish].

7. Now starts the Atmel USB driver installation. Click [Next].

8. Check [I accept...] and click [Next].

9. Accept the default location, and click [Next].

15

10. Click [Install]. This will launch a command line window and
install a Jungo/WinDriver USB driver. Jungo is what Atmel
uses to write their custom USB driver(s).

11. Click [Install].

12. Finished. Click [Finish].

13. Now, we really start the installation of Atmel Studio. Click
[Next].

16

14. Accept the license agreement and click [Next].

15. Default location is good, click [Next].

16. Last chance to change your mind..., click [Next].

17. Just click [Finish] without check the option, unless you
know what you are doing.

17

Done. The installation of the Atmel Studio is completed. You
should see a lady bug icon on your desktop. That’s the Atmel
Studio’s shortcut.

MAKE SURE YOU RESTART THE WINDOWS OS,
OTHERWISE THE NEWLY INSTALLED USB DRIVER MAY
NOT WORK!

18

Once the Windows OS is rebooted, you should find that you
have a red Lady Bug icon on your desktop. That is the Atmel
Studio icon. Launch it.

The first time you launch Atmel Studio, there is a little bit of setup
to do, in particular if you are on the newer Vista or Windows 7.
These have very nagging security model to the point of
significantly reducing productivity, particularly in the hands of
clueless and draconian system administrators (I have seen such
a “corporate security policies” with which you have to run
EVERYTHING as Administrator, even for a text editor, which
defeats the whole point of the multiple levels of the security
model!).

Suffer the UAC first! Say [Yes, dear].

Now feel the wrath of Windows Security! Click [Allow Access].

Section 3

Starting & Working With Atmel Studio

19

You should now see the main window of Atmel Studio showing
up, with a Start Page.

Now, connect the SAM4S XPLAIN Pro board’s Debug USB port
to the host computer’s USB port.

The connection of Debug USB port to the host computer should
trigger the Windows OS to automatically find the appropriate
driver, which we installed during the process of installing the
Atmel Studio. You shouldn’t need to do any manual step for it. If
everything goes fine, you should see a new SAM4S XPLAIN Pro
tab showing up on the main window. We don’t need any of these
two tabs, close them if you want.

20

We finally have all the tools we need setup and arrive at where
the real work begin -- building a Hempstick board.

We have three tasks to do.

1. Download the latest Hempstick source code.

2. Compile it and burn the firmware to the board.

3. Test the board.

Download the latest Hempstick Source Code
Go http://www.hempstick.org to download http://
www.hempstick.org/download/libHemp.zip and http://
www.hempstick.org/download/Hempstick.zip. Then extract the
two zip files into the same folder.

It is important to put both in the same folder in a convenient
location with short path name. If you don’t, you will need to
modify the build settings in the project, which is beyond the
subject of this Super Quick Start Guide.

I would suggest that you put it in something like c:\workspace\.
From here on, I will use c:\workspace\ to refer to the location of
the source code.

Compile & Build Hempstick
In the main window of Atmel Studio, click the following in the
menu: [File] -> [Open] -> [Project/Solution].

Navigate to c:\workspace\Hempstick\, and select the Hempstick
solution, as shown above.

Section 4

Building Hempstick

21

http://www.hempstick.org
http://www.hempstick.org
http://www.hempstick.org/download/libHemp.zip
http://www.hempstick.org/download/libHemp.zip
http://www.hempstick.org/download/libHemp.zip
http://www.hempstick.org/download/libHemp.zip
http://www.hempstick.org/download/Hempstick.zip
http://www.hempstick.org/download/Hempstick.zip
http://www.hempstick.org/download/Hempstick.zip
http://www.hempstick.org/download/Hempstick.zip

The first time you launch Atmel Studio and load up a solution, it
may automatically show you the ASF Explorer pane on the upper
right hand corner. This pane is not very useful for our purpose. Go
to the lower right hand corner of the pane, find the tab called
Solution Explorer, and click it.

Now select the Hempstick_SAM4S_EXPLAINED_Pro project in

the Solution Explorer pane, and click button in the toolbar on
the top, right below the menu bar.

This will do the followings.

• Compile everything needed for compilation in the selected
project.

• If everything goes well, load the resulted firmware binary and
burn it to the selected board.

• Run the newly burnt firmware.

If you see warnings on the bottom output pane. Don’t worry. It’s
normal.

If everything goes well, you should see first the green status LED
blinking very fast. This is the indication of activities on the EDBG
bus. Then, if the firmware runs successfully, you should see the
orange LED0 starting blinking at a rate of 1Hz. The LED0 blinking
at 1Hz is a feature in Hempstick to indicate that the embedded
FreeRTOS is executing tasks correctly.

Now, now.... you have just made a Hempstick board.

I am not kidding that it is easy, did I?

22

Test The Board
Now we need to run some basic joystick tests.

Plug in another micro USB cable to the USB port on the SAM4S
XPLAIN Pro board marked SAM4S USB and connect the other
end to your host computer (same one as the one your run Atmel
Studio is fine).

This should trigger a driver installation on your host Windows OS.
SInce the Hempstick is a USB HID joystick device, Windows
come with default driver, which will work just fine.

Now, go to [Start] -> [Devices and Printers], and you should
see the Hempstick showing up as a game controller.

Select the [Hempstead Joystick Controller 4S] -> [R-click] ->
[Properties].

23

Although we just showed you how simple it is to make a
Hempstick board, you would still need to wire up the board for
your controller function. The pin assignments will be shown in
other chapters.

Also, note that, the EDGB built into the SAM4 XPLAIN Pro board,
although saves you from having to obtain a hardware
programmer/debugger, it is nevertheless a very new technology
from Atmel. It communicates with the host computer via USB,
and the USB driver is very twitchy. You will need to shut down
the EDBG in a very specific order or it will never work again until
you reboot the PC (and the shutdown of the OS will get stuck;
that bad). Here’s the proper way of shutting down the EDBG.

1. If you are in any debugging session, STOP the debugging
session.

2. Unplug the Debug USB cable from the SAM4S XPLAIN Pro
board.

3. NEVER ever rewire the pins while plugged into Debug USB
port, or it will cause the EDBG (or driver, I don’t know which). to
freeze and then the Atmel Studio will never be able to

communicate with it correctly until reboot. This is particularly
true, if you plug or unplug a ground pin!

Until Atmel fix this problem, you should follow the above
procedure every time you are up for rewiring the board.

Section 5

Epilogue

24

Chapter 3

Pins & Wiring

A Hempstick is useless unless you wire up
something, like ADCs (Analog-Digital Converter),
Hall Effect Sensors, buttons, and switches.

This chapter gives you some of the OOTB (Out-Of-
The-Box) pin assignments and wiring instructions.

The Atmel’s new series of ARM chips, like the one used in the
SAM4 XPLAIN Pro board, are 3.3V devices and unfortunately,
they are not 5V tolerant. Meaning, if you wire up 5V to a pin
directly, you risk frying the MCU chip!

5V vs. 3.3V Power Supply
Since the USB bus is a 5V bus and a lot of TTL era sensors are
5V devices, and the Atmel evaluation boards or Arduino boards
usually come with both 5V and 3.3V power pins, you must be
very careful on whether you power the sensor with 5V or 3.3V.
For some sensors that require 5V, like some older analog Hall
Effect Sensors from Allegra, you will need some voltage level
converters. In some situations, a simple resistor-based voltage
divider would suffice. For more complex 5V logics, full bi-
directional logic converters may be needed. On the other hand,
programmable Hall Effect Sensors like the MLX90333/MLX90316
can be programmed to only output up to 3.3V, eliminating the
need for a voltage divider.

The bottom line is that the Atmel ARM MCU pins may get fried if
your sensors feed them 5V.

Fortunately, for the run of the mill buttons and potentiometers
that we commonly used in joystick and controllers, wiring them
up directly to the on board 3.3V power would do just fine.

Pull-up Resistors & Debouncers
In addition, for buttons and switchers, usually some hardware
debouncer and pull-up resistors would be needed.

Fortunately, the MCUs supported by the Hempstick all have
built-in pull-up resistors and hardware debouncers on chip and
they are all by default enabled when configured for buttons and
switches so you do not have to wire up additional pull-up
resistors and debouncers.

What are the pull-up resistors and debouncers then?

Section 1

A Few Words About Pins & Wiring

26

Pull-up Resistors
Imagine that an MCU pin is configured to read 0 or 3.3V and give
the firmware reading the voltage as either 0 or 1 digital values.
Now, we wire the pin to a momentary button.

A momentary button has two pins, when you press the button, it
connects the two pins electrically, and when you release it, it
disconnects the two pins, sort of (more on this in the debouncer
topic).

How do we wire it up to the MCU pin then? We could connect
one button pin to the Vcc (3.3V), and the other pin to the MCU
pin, like so.

So, if the button is pressed, the 3.3V Vcc will be directly
connected to the MCU Pin making it sense 3.3V and reads logic
1. Good? No! What happens when the buttons is not pressed? Is
the MCU Pin going to read 1 or 0? Nobody knows. It is called a
Floating Pin.

To solve this problem we usually connect the pin the following
way.

This way, when the button is not pressed, we guarantee that the
MCU Pin will read 1 and when the button is pressed, it reads 0.
The only trouble is now that when the button is pressed the MCU
read 0 and when it is not pressed, the MCU reads 1, exactly the
opposite of what we would have thought. We can easily revert
that in software. No worry, and Hempstick source code does that
for you.

Note that, we need to chose an R1 resistor value suitable for the
circuit so that it does not sap too much power, whether the
button is pressed or not. When not pressed, the MCU would have
a very small internal resistance and consume some neglectible
power, and when pressed, the MCU pin gets pull to the ground
0V, and it will consume Vcc/R1 amp. The common value to use is
10K ohm or 100K ohm for such circuits.

27

Fortunately for us, the Atmel MCUs, like I mentioned earlier, come
built-in with a 100K ohm pull-up resistor for each I/O pin (Input/
Output pin) and they can be activated by software.

So, there is no need for you, the end user of Hempstick, to wire
up pull-up resistors. The Hempstick firmware will configure the
MCU to do so for buttons.

Debouncers
When we switch on a light switch, we tend to think that the switch
contact connects the wire and the current flows, the light goes
on. That’s it.

On a macro conceptual level, yes, that is true. But not so when
the MCUs are capable of reading thousands or millions of values
per second. The contact actually connects and disconnects a
couple of times during a few millisecond time frame. This is called
Switch Bounces. We humans cannot see it, but the MCUs can.
How many times it bounces and how fast depends on a lot of
factors, including material, force applied, physical design of the
switches, etc. There is no simple and fast rule for it. A lot of it
depends on empirical tests in order to determine the timing
required to take out the bounces.

Let me put it another way. I don’t know anybody designing
switches with certain bounce characteristic, nor do I know any
switch or button that comes with specifications of its bounce

characteristics. Maybe some special military application or NASA
switches come with such spec., I certainly have never seen one.

You don’t want to press the trigger of your joystick one time and
fire several missiles during a millisecond, would you? Rapid fire is
nice for StreeFighters, not for simmers. Even for the StreetFighter
game, this behavior is not very desirable, I mean, you cannot
control how many bounces it does so can’t you reliably pull off
some awesome combo kicks from Chun-Li correctly. No good!
The bounces must go, and if rapid fire is desirable, it must come
from a more controllable and predictable mechanism.

There we come to the subject of Debouncers.

I will not bore you with the theory of debouncers. Let’s just say
that there are two kinds of debouncers in general, software and
hardware debouncers.

To use a hardware debouncer solution, you obviously have to buy
it, and wire it up yourself. To use a software debouncer, you have
to write the software to, say in a few milliseconds, read the same
pin’s value a few times, and only if the value stabilizes do you
count it as a button press or release, and ignore all the transient
bounces.

Again, the Atmel MCUs the Hempstick support all have such
hardware debouncers built-in for each pin and can be activated
by software configuration. Hempstick does that for you so you do
not have to wire up your own hardware debouncers!

28

The Hempstick is also capable of reading ThrustMaster (TM)
Cougar/Warthog sticks. Unfortunately, the TM sticks are not
equipped with hardware debouncers. So, the Hempstick, when
configured to read TM sticks, it will internally perform software
debouncing for you. Again, you don’t need to do anything.

Note that, whether it is a software or hardware debouncer,
nothing is perfect. They don’t get to filter out all bounces of all
types. They only filter out the most commonly occurring type of
bounces.

The good news is that for human interaction, you most likely will
not see any of these “glitches” from Hempstick. But I cannot
guarantee that you will never see them.

About Residual and Floating Values of
Unwired ADC Channels

In the default configuration of the Hempsticks, we configure at
least 8 ADC (Analog-to-Digital-Converter) channels for each
controller. This gives you X, Y, Z, Rx, Ry, Rz, Slider, and Dial for
Windows’ maximum 8 ADC channels.

However, if you do not wire up all ADC channels, say you only
wire up X, Y, Z, and Rx. The rest of the unused channels may get
residual values from wired up channels. This is because, there is
only one ADC module, and all the 8 channels “multiplexes” on the

same ADC hardware. It is like a time-sharing scheme in using the
computer CPU; we sample one channel at a time, one after
another, and if we sample them fast enough, it looks like 8
channels are all sampled concurrently all at once to the end user.
However, there is also only one “sample-and-hold” hardware in
the ADC module. So, since you did not wire up Ry, Rz, Slider, and
Dial channels, they still get sampled after the X, Y, Z, and Rx, and
the sample and hold hardware may have some residual charges
left in the “hold” part of the hardware from the previous sampling
of wired up channels. That, would appear on the unwired
channels. And you would see some random values showing up
on these unwired channels. The residue values seem to be
decreasing in magnitude by the sampling order of the channels;
but the sampling order is not deterministic (but mostly in the
order of ADC channel number.).

That is a very unfortunately side effect of accommodating users
who do not have the technical skills or unwilling to spend the time
to produce a customized firmware for themselves.

If you do not wish to see these floating and residual values, then
you have two choices.

1. Wire the unused ADC pins to ground with a resistor, say 100K
ohm.

2. Modify the Hempstick configuration to disable the unused ADC
pins.

29

Method #1 above is basically to ground the unused ADC. BTW, in
electronics, leaving an unused pin floating is usually a bad thing.
The resistor is needed because when the sample and hold circuit
in the ADC samples, internally there is a capacitor holding some
small charge gets connected to the ADC pin. If you wire the
unused ADC pin directly to the ground, when the ADC switches
to that channel and starts to sample, the left over charges from
the previous channel will flow directly into ground without any
resistance and it might cause some unknown large current for a
short time damaging the circuits. The capacitor here is usually a
very small one so the charge is small, but it is not specified. So,
we wire up a high value resistor to ground, serving as a safe
discharge path to dump the charge inside the capacitor.

Another way of solving this “problem” is that you could wire the
unused ADC pins to the 3.3V voltage supply. Again, it would be
advisable to put a resistor between the unused ADC pins and the
3.3V, even though I did try wiring them up without any resistor
and nothing blew up. Sure, the sample-and-hold capacitor in the
MCU for sure has a very small value, and it probably has some
internal stray resistance value, but we don’t know how much
there is. It’s never wise to rely on unknown values or wire a
charged capacitor to ground or power supply directly without any
resistance. You might not destroy it immediately, but you could be
shortening the life of the ADC module or even the MCU itself.
Although it is in general not a good idea to leave pins floating,

wiring charged capacitor directly to ground is an even worse
offense!

Even if you don’t do anything and leave the unused ADC pin
floating, it won’t do any harm. It just looks funny.

We will discuss how to customize Hempsticks and produce your
own very custom controller of your own in some other chapters.

30

The Hempstick 4S uses an Atmel SAM4S XPLAIN Pro board. The
board has 3 extension connectors, EXT1, EXT2, and EXT3, plus
a Spare, a PIOD, and an LCD connector. The latter three are not
used by Hempstick. So, in this section, we will only list the pin
assignments used by the OOTB pins. In addition, there is also a
PWR connector providing external power of rectified 5V, USB 5V,
and a regulated 3.3V.

If you wish to use the unused connectors for more input, you will
have to customize the Hempstick 4S configuration. A word of
caution though. Some of the pins on the unused connectors are
“shared” with the EXT1, EXT2, and EXT3 connectors. Meaning,
some of the pins are internally connected to some of the pins on
the EXT1, EXT2, and EXT3 connectors!

Even the EXT1, 2, and 3 connectors have shared pins. The SPI
pins, MISO, MOSI, etc. Be careful when you reassign these pins!

 Power Pin Assignment

Section 2

Hempstick 4S Pin Assignment

31

PIN Function Description

EXT1-19 GND

EXT1-20 Vcc 3.3V

EXT2-19 GND

EXT2-20 Vcc 3.3V

EXT3-19 GND

EXT3-20 Vcc 3.3V

PWR-1 VEXT_P5V0 External 5V Input

PWR-2 GND

PWR-3 VCC_P5V0 Unregulated 5.0V

PWR-4 VCC_P3V3 Regulated 3.3V

ADC Pin Assignment

You must wire the potentiometers to the 3.3V Vcc, GND, and the
assigned ADC input pins, in a three-wire configuration. Usually,
the output voltage pin would be the middle pin of the 3 pins on
the potentiometer, and the Vcc and GND wired to the other two
pins, depending on the direction of rotation you wish to have.

For other analog sensors like the Hall Effect Sensors, you must
ensure that the sensors’ analog output never exceed 3.3V. For
instance, for an MLX90316, you could program the internal
response curve to output 0 to 3.3V with a linear response.

For other 5V Hall Effect Sensors that do not have internal
response curve configuration, you could use a simple resistor
voltage divider for them. I will discuss this arrangement in some
other chapter/section.

ADC Pin Assignment

There are up to 16 ADC channels on the MCU. However, some of
the channels are used for other purposes or are not routed out on
the SAM4S XPLAIN Pro board. We support only 8 ADC channels
for this board.

The XPLAIN Pro series of boards are designed to have the same
functionality for each extension connectors, each having the
same number of ADC channels, SPI, etc. That’s why some of
these pins and channels seem to jump around randomly at the
first sight. Oh, well, they are a bit arbitrary, nevertheless, there is
some logic in there.

32

PIN Function Description

EXT1-3 X ADC Channel 0

EXT1-13 Y ADC Channel 8

EXT1-14 Z ADC Channel 9

EXT2-3 Rx ADC Channel 4

EXT2-4 Ry ADC Channel 5

EXT3-3 Rz ADC Channel 13

EXT3-4 Slider ADC Channel 14

EXT3-14 Dial ADC Channel 7

TMStick Pin Assignment

TMStick Pin Assignment

The TMStick internally has 3 8-bit cascaded JAM-Type Parallel-
to-Serial shift registers. What this means is that it has total 24x
inputs from buttons. When pin 2 is not asserted low (usually high),
it allows whatever values to go into the register. Once pin 2 is
asserted low, it locks whatever value is in the register at the time.
Then it requires 24 clock pulse train to shift out the 24 values one
at a time. That is, it locks the 24x parallel inputs and shift them
out serially.

This requires three facilities in order to make it work, in addition to
the Vcc and GND pins, they are:

• A trigger low periodically to lock the parallel inputs.

• During the period that the trigger is asserted low, we must
generate 24x clock pulses to shift out the 24x values.

• A pin to read this 24x bits of data and arrange them in the a
desired order and format.

The Hempstick 4S uses an MCU built-in Timer-Clock TIOA2 to
generate the periodical trigger pulses at the rate of 1KHz. During
each of the 1ms trigger period, it uses the MCU internal SSC
module to generate 24 clock pulses at the rate of at least 500KHz
to shift out the 24 data bits.

To connect to a TMStick, you must connect the EXT2-9 pin to
EXT2-8 and then connect the combined pin to TMStick’s pin 2.
You must also connect the TMStick pin 3 & 4 according to the
table above. In addition, you must also connect the 3.3V Vcc and
GND pins. DO NOT CONNECT 5V to the TMStick! You might
damage the MCU by connecting 5V to the TMStick, although the
TMStick will be fine with it (TMStick would out put 5V!).

PIN TMStick Pin Function Description

1 Vcc

EXT2-8 2 Serial-Parallel RF

EXT1-8 3 Clock RK

EXT1-4 4 Data RD

5 GND

EXT2-9 Clock
TIOA2, connect to

EXT2-8, TMStick Pin
2

33

TMStick Pin Out

TMStick Color Code for Cougar

TMStick Color Code for Warthog

Please note that the color code of the wires listed here is
decoded from my sample of Cougars and Warthogs. I cannot
guarantee that all Cougars and Warthogs are wired this way. You
use this color code at your own risk!

Pin Color

1 Brown

2 Red

3 Orange

4 Yellow

5 Green

Pin Color

1 Black

2 Brown

3 Red

4 Orange

5 Yellow

34

Button Pin Assignment

Please note that when TMStick is activated, it occupies button 0
to 23 positions. By default, Hempstick 4S has the TMStick
activated.

Since Windows’ DirectInput USB driver is only capable of
handling up to 32 buttons, although USB is capable of up to 128

buttons, you are left with 8 additional buttons to assign.

6 7 Trigger 2nd
Stage

Trigger 2nd
Stage

HAT N 8 Trim Up Trim Up

HAT E 9 Trim RWD Trim RWD

HAT S 10 Trim Dn Trim Dn

HAT W 11 Trim LWD Trim LWD

7 12 TMS Up TMS Up

8 13 TMS RWD TMS RWD

9 14 TMS Dn TMS Dn

10 15 TMS LWD TMS LWD

11 16 DMS Up DMS Up

12 17 DMS RWD DMS RWD

13 18 DMS Dn DMS Dn

14 19 DMS LWD DMS LWD

15 20 CMS Up CMS Up

16 21 CMS RWD CMS RWD

17 22 CMS Dn CMS Dn

18 23 CMS LWD CMS LWD

35

Position
in

Windows

Position
in

Hempstick
Internally

Cougar
Stick

Function

Warthog
Stick

Function

1 0 Trigger 1st
Stage

Trigger 1st
Stage

19 1 N/C CMS Push

20 2 N/C N/C

2 3 WPN/REL WPN/REL

3 4 Nose
Wheel

Nose
Wheel

4 5 Pinky Shift Pinky Shift

5 6
Master
Mode

Control

Master
Mode

Control

When the TMStick is activated, here is the list of the buttons
assignments.

36

The MCU used in Arduino Due/X is a SAM3X8H. It is no different
from any other more recent ARM chips from Atmel; they are all
3.3V devices. So, as usual, do not wire 5V supply to your
sensors, unless you can limit the output of the sensors to 3.3V
max. output.

ADC Pin Assignment

PIN Function Description

A7 X ADC Channel 0

A6 Y ADC Channel 1

A5 Z ADC Channel 2

A4 Rx ADC Channel 3

A3 Ry ADC Channel 4

A2 Rz ADC Channel 5

A1 Slider ADC Channel 6

A0 Dial ADC Channel 7

Section 3

Hempstick Due Pin Assignments

37

TMStick Pin Assignment

TMStick Pin Assignment

Button Pin Assignment

The default Hempstick Due has the TMSTick activated. So, the
same as the pre-configured Hempstick 4S, the first 24 buttons
are assigned to the TMStick. For the button assignment, please
see Buttons Pin Assignment in Section 2.

Again, since Windows DirectInput only supports up to 32 buttons
for USB controllers, we are left with 8 buttons. Here are their pin
assignments.

38

PIN TMStick Pin Function Description

1 Vcc

62 (A8) 2 Serial-Parallel RF

64 (A10) 3 Clock RK

63 (A9) 4 Data RD

5 GND

11 (Digital
11) Clock TIOA8, connect to

A8, TMStick Pin 2

PIN Position in
Windows

Position in
Hempstick
Internally

22 18 17

23 19 18

24 20 19

25 21 20

26 22 21

27 23 22

28 24 23

Chapter 4

Customizatio
n

Most of the customization of Hempstick are done
through either configuration header files or some .c
files that contains only data (no code).

In this chapter, we will discuss some common
customizations. But we will not discuss code
changes.

Configuration File Sets

The directory src/config/ contains the active configuration file
sets. The compilation will use this set of files.

However, there are sub-directories under the src/config/
directory that you will not see in the Atmel Studio projects. Do
not add these directories or files into the project.

These are the sets of configurations file sets for certain
Hempstick configurations. Each directory contains one particular
set. For instance, src/config/Cougar/ contains the configuration
files somebody customized to work for Cougar, in this particular
case, I did.

If you just want to use a pre-configured set, copy all the files
from the directory into src/config and overwrite the existing ones.
Then compile burn the firmware.

If you are going to customize Hempstick, I recommend you find a
set of configuration files closest to what you want and then
customize that one.

The active configuration file set that come with Hempstick
whenever you check out the newest version will be whatever I
happen to be using last.

Change Manufacturer & Product Name

The simplest and most visible change the users want would
most likely be to put their Call Sign on their custom USB
controller.

There it is.

Open src/confg/conf_usb.h. Scroll down and find the following
two lines.

 #define USB_DEVICE_MANUFACTURE_NAME "Hempstead"

 #define USB_DEVICE_PRODUCT_NAME "Hempstead Joystick

Controller 4S"

Change them to whatever you like. But, please, stay in 256
character length!

Section 1

Top Level USB Customizations

40

Change USB Vendor ID & Product ID

Alright, for the USB uninitiated, the Vendor and Product IDs
require a little explanation.

Every USB device comes with a Vendor Id & Product Id. When a
USB device is plugged in to a computer, the USB Hub on the
computer notifies the OS of the plug-in event. The OS then
interrogates the device for its USB descriptor, which describes
what the device contains what function. The OS then uses this
information to find and load the appropriate driver (if any) to
communicate with the device.

In the USB descriptor, there may be a USB device class number.
If that exists, the OS “should” use the built in class driver for the
device. For our purpose, the Hempstick is always a USB Human
Interface Device (HID) class device and a Joystick sub-class. The
Windows (and other OSes) will then use a built-in USB HID
Joystick driver for Hempstick.

If there is no USB class indicated in the USB descriptor, then the
VID & PID are used to search the OS for appropriate driver. On a
Windows OS, this is the collection of the .inf file installed with the
driver. A .inf file contains, along with other information, the VID &
PID, as well as the name of the driver .dll file. Once a .inf file is

located, the driver is loaded into the OS kernel to start
communicating with the USB device.

How do you get a VID? Well, the USB consortium controls the
distribution of the VIDs. You either join as a member of
consortium, or you pay about USD $2,000/year for a non-member
VID. Under each VID, you may assign whatever PIDs you wish to
your products.

Even though the OS does not use the VID & PID to locate the
appropriate driver for HID devices, VID & PID are still required to
be programmed in and reported by the device via the USB
descriptor.

Thus, some manufacturers use this VID to exclude the support of
other vendor’s products in their drivers.

You cannot just program your Hempstick to any VID/PID pair!!!
The OS will remember it and may cause collision with other
vendors’ VID/PID!

But, it’s your computer, as long as you are careful to avoid the
collision, do you care? Say, you use CH Rudder’s VID/PID. As
long as you don’t plug in CH rudder in your computer, you will not
have collision.

Under a USB HID class, there are sub-classes of devices, like
mouse, keyboard, etc. Hempstick is a Joystick sub-class device.
A USB HID class driver is a generic class driver. In the USB

41

interrogation process, the Hempstick must also submit a USB
Joystick HID report descriptor. This HID report descriptor
describes what which button is at which byte, which bit, which
axis is at byte what, and how long. We will come back to this later
in more advanced customization. Suffice it to say that this HID
report descriptor is how we define how many buttons, and how
many axes there are in the USB joystick we are plugging in.

Back to VID/PID.

If you use other manufacturer’s VID/PID. What happens?

Well, remember that since the Hempstick is an HID Joystick sub-
class device, the Windows generic HID Joystick driver is used.
And the USB HID report descriptor the Hempstick reports
determines how many buttons and how many axes there are.
Since the driver is a generic one, the what so called “driver” from
your vendor, like ThrustMaster, CH, or Saitek are not really “driver
driver”, they are just user land applications, not a kernel land
“driver driver”, and they must go through the generic driver to find
out the capability of the device plugged in. That is, they get
whatever we report in the HID report descriptor.

So, say, if you program your Hempstick to be a T.16000M
joystick. What happens? Well, if they write their “driver” correctly,
then all the buttons & axes will work right. Because a SIM does
not care whether it’s a T.16000M joystick or not, it only care
whether it’s a DirectInput device. And the SIM queries the OS via

DirectInput API to find what joysticks are available, and what
capability each joystick has, it gets what our HID report descriptor
says too.

However, each vendor’s “driver” might be programmed to know
specifics of a particular device, based on the VID/PID. So, inside
their “driver”, they might not be able to “refer” to the Rx axis,
because the particular device does not have it. For instance, a T.
16000M joystick does not have the Rx axis. So, inside TARGET,
you cannot program the Rx axis. But, inside your SIM, you can
still use the Rx axis.

Choose your VID/PID carefully to fit your needs.

To change the VID/PID, find the src/conf/conf_usb.h again, and
find the following lines.

 #define USB_DEVICE_VENDOR_ID 0x44F

 #define USB_DEVICE_PRODUCT_ID 0xB10A

 #define USB_DEVICE_MAJOR_VERSION 8

 #define USB_DEVICE_MINOR_VERSION 0

Change them to what you like.

While we are at it, let’s talk about the major/minor numbers.
42

Each time you change the USB descriptor, or HID report
descriptor, the Windows OS remember that, associate with the
VID/PID/major/minor numbers. So, if you change your
descriptors, it would be wise to also “bump up” the major/minor
numbers. Otherwise, the Windows OS might continue to use the
old descriptors from its internal cache and your newly updated
Hempstick will not work well with the old descriptors the OS
assumes it’s using!

Now, is it legal to use others’ VID/PID? I am not a lawyer, but
what I understand is this.

The USB Consortium does not own numbers! They own their
trademarks. One of that is the USB logo. To qualify using the USB
logo and trademark, your devices must pass a USB test suite.
One of the test criteria is the VID/PID. You must program it to use
your own VID!

But, as a private citizen, do you care whether your own custom
Hempstick carries a USB logo, or claim USB compliant? I guess
you do not.

Moreover, USB developers routinely use others’ VIDs. Otherwise,
you may not start your development before you obtain a VID.
That’s just not good for business.

Change The Buttons & Axes Assignment

The Hempstick comes with a default buttons & axes assignments
for each board. By default, it comes with 64 buttons & 8 axes.
And each different board has different pin assignments mapped
to each USB report position (i.e. USB HID buttons & axes)
because each board has different layout of the pins.

I try to make the default configuration as general as possible, but
there is no such thing as one size fits all in embedded
programming. You will need to be able to remap these.
Hempstick makes it easy for you to do that. There are two files to
change. They are:

• src/config/conf_hempstead.h

• src/config/conf_hempstead.c

I know, I know... naming the files with your own online handle...
EGOTISTIC BARSTARD!!! Programmers are not very inventive in
naming things. We run out of names all the time. I originally put
conf_hempstead.h and .c there as a place holder before I came
up with the name Hempstick, and intended to change the
conf_hempstead.h .c files to match the name of the controller, but
the name stuck because after the fact it’s a bit difficult to change
when the IDE, VisualStudio-based Atmel Studio does not have a
good refactor tool like Eclipse has.... It’s commonly referred to as
Design Inertia. ;-(If you do manage to change them to
conf_hempstick.h .c safely, please let me know, I will gladly take

43

your changes. But I would still need to modify the documents to
match. *sigh*

The Number of PINs configured and Buttons

Find the following lines in the src/config/hempstead.h.

 #ifdef CONF_BOARD_SAM4S_XPLAIN_PRO

 # define CONF_NUM_PINS

 15

 # define CONF_TOTAL_NUM_BUTTONS

 32

 # define LED0_GPIO

 PIO_PC23_IDX

 # define CONF_SSC_CLOCK_SOURCE_ID

 ID_TC4

 # define CONF_SSC_CLOCK_TC

 TC1

 # define CONF_SSC_CLOCK_CHANNEL

 1

 #elif defined(CONF_BOARD_ARDUINO_DUE)

 # define CONF_NUM_PINS

 22

 # define CONF_TOTAL_NUM_BUTTONS

 28

 # define CONF_SSC_CLOCK_SOURCE_ID

 ID_TC8

 # define CONF_SSC_CLOCK_TC

 TC2

 # define CONF_SSC_CLOCK_CHANNEL

 2

 #endif

Note the lines marked in red. You only need to concern yourself
with the section that corresponding to the board you are using.

The macro constant CONF_NUM_PINS must match exactly the
number of entries in the following section in the src/config/
conf_hempstead.c.

 hw_pin_configuration_table g_hw_pin_conf_table = {

 .mutex = NULL,

 .pin = {

 {.pin = PIO_PC23_IDX, .conf =

HW_PIN_ENABLE_MASK, .mode = (PIO_TYPE_PIO_OUTPUT_1 | PIO_DEFAULT)},

 {.pin = PIO_PA0_IDX, .conf = HW_PIN_ENABLE_MASK, .mode =

PIO_PERIPH_B},

44

 ...

 {.pin = PIO_PA24_IDX, .conf = HW_PIN_ENABLE_MASK, .mode =

(PIO_TYPE_PIO_INPUT | PIO_PULLUP | PIO_DEBOUNCE)},

 },

 };

The number of {.pin ...} entries must match what is defined in
CONF_NUM_PINS!!! If you count it wrong, the whole thing either
come crashing down or some entries will not be read and the pins
will not be configured correct! I might change this
“inconvenience” in the future when I implement the feature of
dynamic configuration at runtime via a USB thumb stick.

Configure MCU Pins as Buttons

This table of data are read at startup of the Hempstick configure
the MCU pins. Each pin you wish to use must be configured
because each pin of the Atmel MCUs are “multiplexed” to have
multiple possible functions to save the number of pins that need
to be brought out from the silicon die to outside of the IC
package. If you don’t configure a pin, then it would use the
default configuration and that is highly MCU dependent.

For instance, on the SAM4S MCU with 144 leads, the pin
PIO_PA24 could be used for General Purpose IO (PIO), or it could
be used for the following functions.

• RTS1

• PWMH1

• A20

• PIOD0

• GPIO

Meaning, that particular pin could be used for either Request To
Send for Serial Port 1, or PWM High Side channel 1, or Address
line #20, or PIO D0, or GPIO. But not all at once. It’s firmware
controllable.

In addition, each pin when configured in a particular mode, might
have several different options. What we are more concerned here
is when you configure it as a GPIO pin for button inputs.

Take a look at the PIO_PA24 entry. When a pin is configured as
GPIO pin, we first put the .conf=HW_PIN_ENABLE_MASK to tell
Hempstick to enable that particular pin. Then there is the .mode.

The .mode tells the Hempstick to switch this pin to PIO mode, tell
it to configure it as input, turn on the built-in pull-up resistor, and

45

then finally turn on the hardware debouncer. All button pins must
be configured this way. Except the pull up resistor.

Some newer Atmel MCUs not only come with pull up resistors for
GPIO pins, they also come with pull down resistors. Usually, you
would want the pull up resistor to be turn on instead of pull down.
It’s common to use pull up resistors on IO pins. This is often
referred to as negative logic. For buttons, you must either pull up
or pull down, if you don’t, the pin is called floating. A floating pin’s
status is undetermined. That is not good. For unused pins, you
usually want to “ground” them to make them into a known state.
If you don’t use a pin and you don’t pull up nor pull down, you
cannot reliably read them.

The Hempstick uses the conventional negative logic for buttons.
Meaning, if the pin has 3.3V, it’s a logic 0. If the pin has 0V, it’s a
logic 1. Then the firmware reverses it to report to USB.

So, if you turn on the pull up resistor of a GPIO pin. Then you
need to connect that pin to one side of the button, and the other
side of the button to ground. This way, the pin is internally
connected to the 3.3V by the MCU. So if the button is not
pressed, the pin is 3.3V, and the Hempstick reports it as logic 0
(button not pressed) to USB.

If you turn on the pull down resistor, then you need to connect the
other side of the button to 3.3V. This way, when the button is not

pressed, the pin is 0V, and the Hempstick reports it as logic 1 to
the USB. This is used in the usually on, press to break situation.

But which pin should be configured for buttons? You need to read
the board’s User’s Guide. It will give you tables of pins names.

The above is for configuring each MCU pin for the purpose of
GPIO pin as a button. We still need to tell it which pin maps to
which button bit in the USB report.

Assign MCU Pins to USB Button Bits

A configured pin is just a configured pin on MCU. It is useless to
us unless we tell it which pins are mapped to which USB report
as button pressed.

Each of the button status in the USB report is one bit, either 1 or
0. ‘1’ means button pressed, and ‘0’ means button not pressed.

You may map any pin to any USB button (just don’t map multiple
pins to the same USB button!). Here’s how you do it.

In the same file, src/config/config_hempstead.c, find the following
section.

rtos_button_data_t g_rtos_button_data = {

 .data = NULL,

46

 .num_button = 0,

 .mutex = NULL,

 .rtos_internal_task_semaphore = NULL,

 .rtos_task_semaphore = NULL,

#ifdef ID_PIOA

 .ports[0].button_conf[0].flags = 0x0000,

 .ports[0].button_conf[1].flags = 0x0000,

 .ports[0].button_conf[24].flags =

RTOS_BUTTON_PIN_ENABLED_MASK, .ports[0].button_conf[24].data_position = 30,

 .ports[0].button_conf[25].flags =

RTOS_BUTTON_PIN_ENABLED_MASK, .ports[0].button_conf[25].data_position = 31,

 ...

On the Atmel SAM serious of ARM chips, the pins are organized
in ports. Each port contains maximum of 32 pins. They are usually
named PIO_A, PIO_B, PIO_C, ... That’s why the pins are usually
named PAxxx namely Port A pin xxx.

In the data structure above, you first enable the pin for mapping,
by specifying RTOS_BUTTON_PIN_ENABLED_MASK, then, you
tell it which USB button you wish to use for which pin, by
specifying something like
this, .ports[0].button_conf[24].data_position = 30. Here, port A
must use .ports[0], port B uses .ports[1],... etc. Then you tell it the

pin number with .button_conf[xxx], and .data_position = yyy,
where .xxx is always the pin number, yyy should be the USB
button number.

Repeat this for all USB buttons you wish to map. If you configure
a pin, but does not provide the mapping. That’s ok, no harm
done, but you won’t see the button pressed in the USB reports
send to your computer. It’s just that when you press that button,
the Hempstick will spend the time to process it, but will never
report it to the computer. Wasteful, but it’s safe.

On the other hand, if you don’t configure a pin, yet you provide
the mapping to USB button, you would be reporting BS to the
computer. In particular, if you configure a pin to other mode, say
PWM, the behavior is undefined. When the programmer tells you
the behavior is undefined, it usually means... don’t do it, I don’t
know what will happen!

What happens when you configure a pin as GPIO and as input,
but you connect it to some external signal instead of a button?
Say, you have an external circuit that when pressed, it
automatically sends out 5 on-off sequences? Well, you get 5 USB
report that Chun-Li just executed a 5 bunch combo. Hempstick
does not care what the signal source is. You can connect an input
pin to a clock signal if you wish (as long as the signal passes the
debouncer, or you turn off the debouncer for that pin). Then you
would get a periodical USB button press reports. Note that, a full
speed USB can only get 1,000 reports per second. So, if your

47

clock signal exceeds 1KHz, then you would still get 1K USB
button reports, not necessarily on-off-on-off.... it could be on-on-
on-off-off-on-.... Each status of the button will be the current
status of the button when each USB report is requested by the
computer. Don’t do that.

Configure the ADC Pins
Usually, if a pin has ADC mode on it, that’s the default mode
when the MCU boots up. That’s the case with Atmel ARM MCUs.
But there is no guarantee! If you know your board, and your MCU
has this behavior, then there is no need to configure the ADC
pins. But if you are not sure, make sure you configure the ADC
pins.

In the file src/config/conf_hempstead.h, find the following entry.

 #define MAX_ADC_CHANNEL 16

That’s the maximum ADC channel data structure entries the
Hempstick will allocate. Make sure this number is larger than the
total ADC channels you wish to use. Setting this larger than
needed is ok. It just waste a bit of memory space. No harm done.
Just make sure this number is not larger than the number of
channels the MCU has.

If you need to explicitly configure an MCU pin to switch on the
ADC mode, add similar entry in the src/config/conf_hempstead.c.

 {.pin = PIO_PA2_IDX, .conf = .conf = PIN_ENABLE_MASK, .mode =

(PIO_TYPE_PIO_PERIPH_B | PIO_INPUT | PIO_DEFAULT)}, // ADC channel 0

Make sure you find the PERIPH_X mode in the MCU specification
document (don’t worry, you don’t need to read the thousands of
pages of spec sheet per MCU. There is usually a table
somewhere in the beginning of the spec sheet). Sometimes they
are peripheral B, sometimes A, sometimes they are called the
extra mode and is automatically turned on at bootup time if you
don’t configure it in the case of SAM3X MCU on the Arduino Due/
X board.

Configure the ADC Channel To USB Axes Mapping

Again, without specifying the mapping from ADC channels to
USB axes, you get no USB report for the values.

There are two places that Hempstick needs your help to do this.

Go to src/config/conf_usb.h and find the following entries.

 #define HID_JOYSTICK_REPORT_ADC_BYTE_OFFSET 8

 #define HID_JOYSTICK_REPORT_TOTAL_NUM_ADC_AXES 8

The HID_JOYSTICK_REPORT_TOTAL_NUM_ADC_AXES tells the
Hempstick how many total axes you specified in the USB HID
report descriptor. The

48

HID_JOYSTICK_REPORT_ADC_BYTE_OFFSET tells the
Hempstick where the byte offset of the axes report should start in
the USB HID report should be.

I am sorry, I don’t wish to write a USB descriptor parser just to
find out these two pieces of information while you could easily
count it and tell me!

If you don’t know how to count that, then don’t change the USB
HID report descriptor! Leave it be! If you do know how to change
the USB HID report descriptor, then you know how to count those
, then help me and give that information.

To enable the ADC channels and provide the ADC channels to
USB mapping, go the the file src/config/conf_hempstick.c and
find the following entries.

rtos_adc_data_type g_adc_data = {

 .data = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

#ifdef CONF_BOARD_SAM4S_XPLAIN_PRO

 .channel_flags = {ADC_CHANNEL_ENABLE_MASK, 0, 0, 0,

ADC_CHANNEL_ENABLE_MASK, ADC_CHANNEL_ENABLE_MASK, 0,

ADC_CHANNEL_ENABLE_MASK, ADC_CHANNEL_ENABLE_MASK,

ADC_CHANNEL_ENABLE_MASK, 0, 0, 0, ADC_CHANNEL_ENABLE_MASK,

ADC_CHANNEL_ENABLE_MASK, 0},

#elif defined(CONF_BOARD_ARDUINO_DUE)

 .channel_flags = {0, ADC_CHANNEL_ENABLE_MASK,

ADC_CHANNEL_ENABLE_MASK, ADC_CHANNEL_ENABLE_MASK, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0},

#endif

 .channel_mapping = {0, UINT8_MAX, UINT8_MAX, UINT8_MAX, 1, 2,

UINT8_MAX, 3, 4, 5, UINT8_MAX, UINT8_MAX, UINT8_MAX, 6, 7,

UINT8_MAX},

The .channel_flags = {....} is the channel enable flags for each
ADC channel. The MCU might have one ADC hardware, but each
can multiplex to multiple channels. You must provide exactly the
number of entries in the table as is defined in

 #define MAX_ADC_CHANNEL 16

The entries in the table starts from index 0 channel of the MCU’s
ADC module. To enable ADC 0 channel, put
ADC_CHANNEL_ENABLE_MASK in the index 0 position, and so
on so forth.

To specify which ADC channel maps to which USB axis, find
the .channel_mapping table, and put in the USB axis number in
each ADC channel position. For any ADC channel you do not
wish to map, put UNIT8_MAX at that position.

Why do we need to provide ADC channel to USB axis mapping?
Well, some boards are not designed specifically for SIM! For
instance, the Atmel XPLAINED Pro boards are designed for
developers as evaluation boards so they can quickly start writing

49

the firmware while their hardware designer are still designing and
debugging the board (that’s why they are cheap, because Atmel
sells MCUs and they want you to develop using their chips easy
and hook you on so when you go production, they make the big
bucks in volume, instead of making small bucks by selling you
thousand of dollars development boards like in the 1990s).
Because of this, these boards are not exactly SIM friendly. They
may not route out all the ADC/GPIO pins out on the board, and
they may not collect all the ADC pins in one convenient place.
And worst of all, they might have some peripherals like buttons,
LEDs, POTs, LCDs, OLEDs, SRAMs etc. on board to demonstrate
the capabilities of the MCU. So, some of these pins are already
“used.” You shall not have them.

That’s the price to pay for the cheap evaluation boards.

So, to get 8 axes for Windows, you might have to use ADC0,
ADC5, ADC7, ADC10, ADC.... and the pins maybe all over the
board. If you want the convenience of all the ADC pins and digital
pins are routed out in one place on the board, use the Arduino
Due/X board. But the Arduino boards do not come with the
embedded debugger like the SAM4S XPLAINED Pro board. You
wold have to buy a hardware debugger (USD $99). And Arduino
Due/X also comes with Arduino bootloader, which requires some
trick to get it to be “burned” by the Atmel Studio IDE.

That, that, that, that, that, that’s all folx.

50

