
Jonah Tsai

Hempstick Rudder
Demo
v.1.0.1

Overview
1

The purpose of this demonstration project & document is to show you how the basics of
how to build a custom Hempstick rudder controller using the Atmel SAM4S XPLAINED Pro
board to read 3x potentiometers (or any voltage source with voltage range of 0 to 3.3V, like
Hall Sensors).

We will assume that you have already installed Atmel Studio v.6.2 or later by following the
instructions in the Hempstick User Guide. We will also assume that you have already down-
loaded the libHemp and Hempstick and opened them in a directory on disk (both must be
under the same directory to avoid having to change the project structure inside Atmel Stu-
dio).

We will demonstrate how to configure the Hempstick configuration files, wire up the poten-
tiometers, compile and burn the firmware to the SAM4S XPLAINED Pro board, and then
show you that the rudder shows up in ThrustMaster TARGET software.

However, due to the fear of DMCA and getting sued, I will omit the crucial part of how to
configure it in order for it to be accepted by the TARGET software. You can either figure
out this part yourself, or you can use vJoy/UJT instead of TARGET.

Why?
Why would you use Hempstick for your rudder?

1. If you have an old game port rudder.

1

2. Your old rudder has 10 bit (or goodness forbid, 8 bit) resolution. Hempstick is 12 bit,
software oversampled to 14bit.

3. Your rudder does not work with TARGET.

4. You intend to use Hempstick to control more than just the rudder. For instance, you
want to convert your old Cougar to use Hempstick, while also use the same Hemp-
stick board to control your rudder.

5. Just to get some experiences of using Hempstick to build other custom controllers in
the future. In this case, a rudder is the simplest starting point to cut your teeth.

What You Need
• Atmel Studio v.6.2 or newer installed.

• MSysGit & SmartGit (optional)

• libHempstick & Hempstick source code

• An Atmel SAM4S XPLAINED Pro board

• A rudder with potentiometers or hall sensors that outputs 0 - 3.3v (does not matter
whether it’s a USB or GamePort rudder, we will rip out all the electronics)

• Some wires and connectors to connect the potentiometers to the SAM4S XPLAINED Pro
board

• Tools to do the wiring (that depends on the methods you decide to do the wiring)

2

Preparations
2

In this chapter, we will make sure that you have all the software tools installed and config-
ured correctly.

Hempstick & libHemp Source Code

If you have not downloaded Hempstick & libHemp yet, download the zip files now. And un-
zip them into the, say c:\workspace\HempstickDemo\. From here on in this document, I
will use c:\workspace\HempstickDemo\ as the workspace directory, and all relative direc-
tory and file references will be assumed to be under this directory unless we spell out from
c:\. You must make sure they have the path of c:\workspace\HempstickDemo\Hempstick\
and c:\workspace\HempstickDemo\libHemp\.

Using the zip file downloads are the easiest way to get you started. But, if you modify any-
thing, and there is a new release in the Hempstick GitHub repository, you will be forced to
manually “merge” them. That is quite a pain, and sometimes a mission impossible.

Therefore, I highly recommend that you use Git revision control system, like I do. This way,
if there is any update on Hempstick GitHub repository, you can simply issue a pull com-
mand. If there is any conflict, it will tell you about it, then you can try to resolve the con-
flicts.

If you want to use Git, I highly recommend that you use MsysGit & SmartGit. SmartGit is a
very friendly GUI built on top of Git. Git itself is written with command line in mind. But, the

3

https://github.com/JonahTsai/Hempstick/archive/master.zip
https://github.com/JonahTsai/Hempstick/archive/master.zip
https://github.com/JonahTsai/libHemp/archive/master.zip
https://github.com/JonahTsai/libHemp/archive/master.zip
http://msysgit.github.io/
http://msysgit.github.io/
http://www.apple.com/
http://www.apple.com/

command line arguments are so complicated that even a Unix command line guy like me
try to avoid that when I can. Hence the SmartGit.

For the step-by-step instructions of installing MsysGit & SmartGit to get Hempstick source
code, please see Appendix A.

Opening the Hempstick Project & Testing the EDBG Driver

We have to make sure the Atmel Studio actually installed your USB drivers for EDBG cor-
rectly. The way that the Atmel EDBG works is that there is an additional EDBG chip in the
back of the SAM4S XPLAINED Pro board. This chip connects to the SAM4S chip’s debug
port to control the SAM4S during debugging/programming.

There are two micro USB connectors on the board. One is labeled Debug USB, the other
labeled SAM4S USB. The SAM4S USB connector is connected to the USB port on the
SAM4S chip, and is what you would use to connect to your computer for it to show up as
a Hempstick controller. The Debug USB connector is actually connected to the EDBG
chip, not the SAM4S chip.

When you connect the Debug USB to your host computer, Windows will automatically
loads up the Atmel EDBG driver, and your Atmel Studio will then know that there is an
EDBG USB device in the system. All debugging/programming commands will be send
from Atmel Studio via USB to the EDBG chip on the board. The EDBG chip then issues
debug/programming commands to the SAM4S chip.

The EDBG thing is wonderful! We used to pay thousands of dollars for hardware debug-
gers per seat! Now it comes free with a USD $39 board! Sure, it’s not as powerful as the
now hundreds, if not thousands, of dollars standalone debugger, but it works fine for devel-
oping Hempstick!

But, this EDBG thing is so new that it’s a bit buggy, particularly the USB driver for it. It
somethings hangs if you do the wrong thing in the wrong order, like disconnecting the De-

4

bug USB cable while you are in a debuggin session. Don’t do that! The only way to fix it is
to reboot the Windows OS. Adding insult to injury, your Windows OS will not shutdown cor-
rectly when that happens. It will get stuck in the “Shutting down......” screen forever, neces-
sitating hitting the big red button!

Enough of the gripe about the bugs in Atmel EDBG. Now, launch the Atmel Studio.

You should see the Start page.

Now, plug in a micro USB cable into the Debug USB connector on the SAM4S XPLAINED
Pro board, and then plug the other end into the host development computer. You should
hear a ding, and Windows starts loading the USB driver for the EDBG device.

5

Once that is done correctly, your Atmel Studio should then show you the SAM4S
XPLAINED Pro page. This means the EDBG connection to the Windows works somehow,
at least the EDBG chip is reporting to Atmel Studio correctly about the board.

Close the Start page and the SAM4S page. They are irrelevant to us for now.

Go to the menu and select [File] -> [Open] -> [Project/Solution...]. There should be a
popup window for file selection. Navigate to the c:\workspace\Hempstick\ and select the
Hempstick.atsln file, and click [Open].

6

You should see the following screen after loading the “solution.”

7

Now, on the right Solution Explorer panel, select the Hempstick_SAM4S_XPLAIN_Pro pro-
ject. And then, go to the menu, select [Tools] -> [Device Programming].

8

You should be able to see under the upper left corner [Tool] drop down box, there are at
least two choices. One is EDBG.... and the other is Simulator. The EDBG... is obviously the
EDBG chip on the SAM4S XPLAINED Pro board, and the other one is the software chip
simulator. Yes, you can save some time for some of your coding by using the software
simulator, but there are things that it cannot simulate, USB is one of them. Well, at least it
cannot simulate USB wire signals to the host computer to simulate a real USB device.

If you do not see the EDBG drop down option, your EDBG driver installation is probably in-
correct during the Atmel Studio installation. I had a problem that I was using Atmel Studio
6.1 for developing Hempstick, when v.6.2 came out supporting more boards, Atmel said
that 6.1 and 6.2 can co-exist on the same system.... Not true... at least the USB driver for

9

EDBG does no work right when both 6.1 and 6.2 are installed on the same system. It not
only does not work in 6.2, it also rendered 6.1’s EDBG non-functional. I had to manually un-
install everything, including 6.2, 6.1 and all the Atmel Tool Chain, USB drivers, and ASF,
everything Atmel, reboot and reinstall only 6.2.

Try that if you have problem completing the following steps.

Now, select [EDBG], and then it should automatically populate the Device field and Inter-
face field. If not, select them as what the previous screenshot shows.

Then, click the [Apply] button. And you should see the SWD Clock slider showing up.

Sometimes, when you click on the [Apply] button, it might detect that your EDBG chip has

10

an older version of firmware, and you must update the firmware before you can continue
(Atmel Studio will automatically guide you through the EDBG firmware update process). At-
mel Studio always ship with newest firmware for every debugger firmware they support, in-
cluding the EDBG. Atmel Studio must operate with the same version of firmware as what’s
on the debugger, and that would be the latest version! Let it update the firmware!

However, if you are running the Windows under VMware, like I do. This update of firmware
might not work. What the update EDBG firmware process does is that Atmel Studio will
instruct the EDBG chip to go into a bootloader mode, using the same VID/PID and then
send over the new firmware for update. Unfortunately, VMWare under a Mac that I use is
not able to detect that change when it still uses the same VID/PID. This would cause the
EDBG USB driver to go funky. Atmel Studio will find the update of firmware failed because
it is not able to detect the bootloader device, while the EDBG USB driver, I guess, keeps
waiting for a bootloader device to show up. Thus, the EDBG USB driver is completely un-
usable at the point. And you would have to reboot the Windows VM.

The only workaround I know for this problem is to update the firmware on a physical Win-
dows machine and then take the updated board back to the development VM.

Why developing a Windows thing on a VM under a Mac? See, the Mac is my main desk-
top, and I run multiple Windows VMs (and Linux too) under it. One Windows VM has all the
development tools, while another Windows VM serves as a target machine that has abso-
lutely no contamination from the development tools! So, for the debugger USB I instruct
VMWare to connect it to the development VM, while for the SAM4S USB, I instruct
VMWare to connect to the target VM. This way, not only the target VM is uncontaminated
to ensure that it works with a vanilla Windows installation, if for some reason the USB
driver (if I ever write one) messes up the target VM and it no longer boots, I can easily
whack the VM and reinstall, without having to install all the development tools! You have to
understand that setting up a development machine takes a long time, installing 20/30 dif-
ferent development tools is very common and you have to make sure they are all config-
ured and working correctly. I am not going to put an under development buggy kernel
mode driver on such a development machine!!!

11

Now, click on the upper right [Read] button. You should now see the Device signature
gets populated. This is the unique chip Id read back from the SAM4S chip via the EDBG
channel. And you should also see the Target Voltage read as 3.3V. Now we have just veri-
fied that your EDBG chip and its USB driver works.

While you are here, slide that SWD Clock slider all the way to the right and click [Set],
please. And close this window.

12

Go to the Solution Explorer again, select the Hempstick_SAM4S_XPLAIN_Pro project
again, [R-Click] -> [Properties]. And you should see the following screen. Select the [Tool]
tab on the left if you have to. You should see the [Selected Debugging Interface] set to
EDBG..., [Interface] set to SWD, and the [SWD Clock] set to 12MHz. If they are not so, set
them so and save the project with [Ctrl-S].

13

We are done verifying the Atmel Studio and the EDBG! Now we can finally go do the real
work of making a rudder controller!!!

14

Configure & Build a Custom
Hempstick Rudder Controller

3

Hempstick comes with several projects inside the Hempstick.atsln “solution.” A solution is
a Microsoft Visual Studio way of organizing several related projects. Each project contains
the complete collection of files to product a final “artifact.” In the Hempstick solution, there
are initially 3 projects.

I. Hempstick

II. Hempstick_SAM4S_XPLAIN_Pro

III. Hempstick_Arduino_Due

The Hempstick project does not support any board. It is a generic Hempstick project other
board-specific projects are based on. You need not concern yourself with this project un-
less you are trying to support additional boards.

In this demo rudder project, we will be using the Hempstick_SAM4S_XPLAIN_Pro project.
From here on, we will only use files under this project. So, any references to file names are
under this project, unless we specifically indicate otherwise.

The Hempstick_SAM4S_XPLAIN_Pro project, by default, comes with the following fea-
tures.

• 64 buttons.

• 8 axes.

• The first 24 buttons are configured to read a TM Stick (Cougar or Warthog sticks).

15

• Runs at 120MHz.

• USB report rate is 1,000Hz (the max. a full -speed USB connection can do.)

Yes, the SAM4S chip is capable of High-Speed USB enabling even higher report rate, but
for a joystick or rudder, you really don’t need anything higher than that. Humans can only,
on average, do about 200ms response. That is, starting you see something to react to it
with muscle movements, it takes about 200ms. We are already reporting 200 times more
than that. Sure, we do need more than 5 reports per second to “predict” in between ac-
tions. But think about it this way. Your screen refresh rate is probably going to top out at
120Hz, but we are already reporting more than 8 times of that. You don’t need anything
higher than that, period!

However, it would benefit from even higher USB report rate if in the future we hook up
Hempstick to Ethernet and other more advanced machine processing, but not now for a
lowly rudder or controlling some instrument panels.

What We Want to End Up With
We just need 3 axes, find the three pins and connect them to 3 potentiometers. That’s it.

What about the built-in 64 buttons and the other 5 additional axes? Who cares? We don’t
connect them. The host computer is still going to get reports about their values, but they
are full of junk data. All buttons will get “not-pressed” report values. And the other 5 axis
reports will get junk data in there. Do you care? I don’t. just don’t configure those extra but-
tons and axes in your sim and you are good.

To really get rid of the unneeded 5 axes and 64 buttons, it would require some more ad-
vanced customizations, like changing the USB HID report descriptor. It’s a little bit more
advanced topic than this quick rudder project is about. We will get into that some other
time.

16

However, we will go into what are needed to change your VID/PID, and the manufacturer
and product name. And we will show you how to verify the functionality with hardware
pots, and then in Windows.

Modify Top Level USB Controller Information

Modify VID/PID
Open the src\config\conf_usb.h file, and look for the following two lines.

#define USB_DEVICE_VENDOR_ID 0x44F

#define USB_DEVICE_PRODUCT_ID 0xB10A

The Vendor Id 0x44F is ThrustMaster’s VID. 0xB10A is T.16000M’s PID. You need to
change these to what you want and be careful not to collide with other USB devices’ VIDs/
PIDs in the system.

The easiest way for you to find a valid VID/PID is to... use other Vendor’s VID/PID! Plug in a
device you wish to “masquerade” as into your Windows OS. Then go to [Start] -> [Devices
& Printers] , select the newly plugged in USB controller [R-Click] -> [Properties] -> [Details]
tab -> [Hardware Ids] on the Property drop down. And you should see something similar to
the following.

17

If you have a Mac. That’s even better. Go look for an “deprecated” application from Apple
called USB Prober.app, and you’d get something similar to the following.

18

See? It not only gives you VID/PID, it even gives you the USB descriptors, including both
binary & parsed version. This is very useful when we get into the more advanced topic of
modifying the USB descriptors in Hempstick.

Modify Manufacturer & Product Name

In the same config\conf_usb.h file, find the following lines.

#define USB_DEVICE_MANUFACTURE_NAME "Hempstead"

#define USB_DEVICE_PRODUCT_NAME "Hempstead Joystick Controller 4S"

#define USB_DEVICE_SERIAL_NAME "1"

19

Change them to whatever you wish. Put your Call Sign on it! Why would you want to use
my call sign???!!!

I would also advise that you keep the line USB_DEVICE_SERIAL_NAME “1” there. Putting
this serial number there allows you to plug the controller into one USB port and then the
next time you plug it into another USB port and Windows OS will remember that same set-
ting for the same device instead of treating it as a different USB device.

Configure the ADC & Buttons

What to configure? Nothing really!

The default Hempstick SAM4S XPLAIN Pro project gives you 64 buttons and 8 axes. All 8
axes are assigned correctly to certain ADC pins, but not all buttons are assigned. In fact,
the default setting turns on the TMStick module so the first 24 USB buttons are automati-
cally assigned to various TMStick buttons.

We need to at least turn off the TMStick module. And if desirable, find the ADC pins we
wish to use and reassign them. Technically, you could just use the default ADC pin assign-
ment and wire your pots accordingly, but we are going to demonstrate how to re-map
these ADC pins to different USB axes.

Turn on/off the TMStick
Open the fire src\conf\config_hempstead.h and find the following line.

#define CONF_ENABLE_TM_STICK_IN_BUTTON 1

Change it to 0 and save the file.

#define CONF_ENABLE_TM_STICK_IN_BUTTON 0

20

That’s it. Technically, you are ready to burn the Hempstick firmware.

But, it’s worthwhile to explain a little bit more in case you wish to remap the ADC pin to
USB axes mapping, even though we have explained this in the Hempstick User’s Guide
document already. We never explained where to find these information. We will do it here.

Re-Assign ADC Pins
Let’s take a peek at the SAM4S specification sheet, just a page.

If you take a look at the PA17 row in the next screenshot, you’d find that it contains multi-
ple peripheral functions. There are so many functionalities implemented on the SAM4S
chip, it’s impractical to route all of them out to each pin. I mean, the SAM4S chip version
we use already has 100 pins, if Atmel route every peripheral function out to dedicated indi-
vidual pins, the chip would probably have something like at least 300 pins. Pins are expen-
sive to route out and you probably don’t need all of them all at once. So, Atmel “multiplex”
the pins/functions. This is a very common practice in the industry, not just Atmel doing it.

The PA17 pin has 5 functions. They are:

• TD

• PCK1

• PWMH3

• AD0

• Unlisted GPIO

We are interested in the AD0 function. This is the channel 0 of the on die 12 bit ADC. This
would be PA17 pin’s “Extra Function.” Extra functions in Atmel chips are usually config-
ured at reset (reboot) automatically, so there is no need to explicitly configure it. But, if we
wish to use the PA17 pin not for ADC but for its PWMH3 function, then we need to explic-
itly configure the PA17 pin to use Peripheral C function. Note that GPIO function is not
listed in the table. But most of pins can be configured as GPIO (as Hempstick buttons).

21

22

Now, let’s take a look at the User’s Guide for the SAM4S XPLAINED Pro board. This page
shows you on the SAM4S XPLAINED Pro board, the pin functions of the Ext 1 connector.

23

From this table, we see that Ext1:3 is the ADC[0] for PA17 pin. We need three of these,
let’s pick PA17, PA18, and PB0. So, we want it to end up like this.

• PA17 (ADC0) maps to Z (main rudder axis)

• PA18 (ADC1) maps Rx (left toe brake)

• PB0 (ADC4) maps Ry (right toe break).

Now, open src\conf\config_usb.c file and find the following entry.

//! HID report descriptor for standard HID mouse

UDC_DESC_STORAGE udi_hid_joystick_report_desc_t udi_hid_joystick_report_desc = {

 {

 0x05, 0x01, // USAGE_PAGE (Generic Desktop)

 0x09, 0x04, // USAGE (Joystick)

 0xa1, 0x01, // COLLECTION (Application)

 0x05, 0x09, // USAGE_PAGE (Button)

 0x19, 0x01, // USAGE_MINIMUM (Button 1)

 0x29, 0x3f, // USAGE_MAXIMUM (Button 63)

 0x15, 0x00, // LOGICAL_MINIMUM (0)

 0x25, 0x01, // LOGICAL_MAXIMUM (1)

 0x35, 0x00, // PHYSICAL_MINIMUM (0)

 0x45, 0x01, // PHYSICAL_MAXIMUM (1)

 0x75, 0x01, // REPORT_SIZE (1)

 0x95, 0x40, // REPORT_COUNT (64)

 0x81, 0x22, // INPUT (Data,Var,Abs,NPrf)

 0x05, 0x01, // USAGE_PAGE (Generic Desktop)

 0x09, 0x30, // USAGE (X)

 0x09, 0x31, // USAGE (Y)

 0x09, 0x32, // USAGE (Z)

 0x09, 0x33, // USAGE (Rx)

 0x09, 0x34, // USAGE (Ry)

 0x09, 0x35, // USAGE (Rz)

 0x09, 0x37, // USAGE (Dial)

 0x09, 0x36, // USAGE (Slider)

 0x35, 0x00, // PHYSICAL_MINIMUM (0)

 0x46, 0xff, 0x3f, // PHYSICAL_MAXIMUM (16383)

 0x15, 0x00, // LOGICAL_MINIMUM (0)

 0x26, 0xff, 0x3f, // LOGICAL_MAXIMUM (16383)

24

 0x75, 0x10, // REPORT_SIZE (16)

 0x95, 0x08, // REPORT_COUNT (8)

 0x81, 0x22, // INPUT (Data,Var,Abs,NPrf)

 0xc0 // END_COLLECTION

 }

};

The above is the default USB HID report. Don’t worry about all the things you don’t know
what they do. Just look at the order of the USAGE(X)... rows.

It says, the first axis, the 0 axis, is X, axis 1 is Y, etc. We want axes 3, 4, and 5.

So, we will have the followings.

• PA17 (ADC0) maps to Z (main rudder axis), USB axis 3

• PA18 (ADC1) maps Rx (left toe brake), USB axis 4

• PB0 (ADC4) maps Ry (right toe break), USB axis 5.

Now, let’s go rearrange the axis mapping in Hempstick. Open the file
src\config\conf_hempstead.c and find the following entries.

rtos_adc_data_type g_adc_data = {

 .data = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

#ifdef CONF_BOARD_SAM4S_XPLAIN_PRO

 .channel_flags = {ADC_CHANNEL_ENABLE_MASK, 0, 0, 0, ADC_CHANNEL_ENABLE_MASK, ADC_CHAN-

NEL_ENABLE_MASK, 0, ADC_CHANNEL_ENABLE_MASK, ADC_CHANNEL_ENABLE_MASK, ADC_CHAN-

NEL_ENABLE_MASK, 0, 0, 0, ADC_CHANNEL_ENABLE_MASK, ADC_CHANNEL_ENABLE_MASK, 0},

#elif defined(CONF_BOARD_ARDUINO_DUE)

 .channel_flags = {0, ADC_CHANNEL_ENABLE_MASK, ADC_CHANNEL_ENABLE_MASK, ADC_CHAN-

NEL_ENABLE_MASK, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

#endif

 .channel_mapping = {0, UINT8_MAX, UINT8_MAX, UINT8_MAX, 1, 2, UINT8_MAX, 3, 4, 5, UINT8_MAX, UINT8_MAX,

UINT8_MAX, 6, 7, UINT8_MAX},

 .num_channel_enabled = 0,

 .adc_config = 0,

 .mutex = NULL,

 .rtos_task_semaphore = NULL,

 .pdc_sample_data = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}

25

};

Ignore the entries under #elif defined(CONF_BOARD_ARDUINO_DUE). We are not using
this board.

In the .channle_flags = {.....} array, this is the 0-based index for ADC channels. This array is
used to tell Hempstick which ADC channels are enabled. The default enables the following
8 ADC channels.

0, 4, 5, 7, 8, 9, 13, 14

Why? That’s the pins routed out on the SAM4S XPLAINED Pro boards. Note that, some of
the pins are not marked as AD[?] on the board’s User’s Guide, but marked as something
else, like the PB2 and PB3 pins are marked as USART1/TXD1 and USART1/TXD1. We
don’t use serial ports on Hempstick, so we reconfigure them as ADC pins.

Another one is the PA18 pin, which is the ADC1 channel. But we are not using it as an
ADC pin, because this pin’s another function, RD, which is crucial for running the SSC
module to read the TMStick. So, we trade one ADC channel for the ability to read the
TMStick. Ok, no use of the PA18 pin for ADC[1].

Hold on, we can’t use PA18 pin for ADC? We need to change our mapping to the follow-
ings.

• PA17 (ADC0, Ext1:3) maps to Z (main rudder axis), USB axis 3

• PB0 (ADC4, Ext2:3) maps Ry (right toe break), USB axis 4.

• PB1 (ADC5, Ext2:4) maps Ry (right toe break), USB axis 5.

Now, look at the .channel_mapping array. We have the followings.

channel_mapping = {0, UINT8_MAX, UINT8_MAX, UINT8_MAX, 1, 2, UINT8_MAX, 3, 4, 5, UINT8_MAX, UINT8_MAX,

UINT8_MAX, 6, 7, UINT8_MAX},

26

The UINT8_MAX entries mean no mapping for those particular ADC channels. But, we find
the default mapping actually maps ADC0 to axis 0, ADC4 to axis 1, and ADC5 to axis 2.
That’s not what we want! Let’s correct them. We get the following.

 .channel_mapping = {3, UINT8_MAX, UINT8_MAX, UINT8_MAX, 4, 5, UINT8_MAX, 0, 1, 2, UINT8_MAX, UINT8_MAX,

UINT8_MAX, 6, 7, UINT8_MAX},

This mechanism allows us to map any ADC channel to any USB axis. Very flexible, but
also a bit complicated. You must make sure that no double mapping (no crash if you do,
but one channel will disappear, but it could be useful if you want to use one pot linked to
two USB axes, say one pot to control two throttles; as to why you would want to do that,
none of my business!).

Why so complicated? Well, the plan is that in the future, I might implement Ethernet or
USB storage so that it’s possible to remap them while the joystick is running. Imagine you
send an UDP datagram to the joystick or plug in an SD card with different configuration,
and Hempstick remaps all the axes and buttons? Or, the Hempstick provides you with a
web page for reconfiguring the axes and buttons mapping? The possibility is endless, but
this mapping mechanism must be there in order to support them!

Software framework and library design is quite different from fixed application design. In a
fix application design, it only has to work one and only one way. But in framework/library
design, it has to work in many ways, in particularly it also has to work in ways you can’t
think of yet. We are providing flexibility for what I cannot think of yet, at the expense of a
little complexity. It’s a trade off. This is the most difficult part of software design -- how
much complexity are you willing to trade for flexibility? Experiences count here. I often see
good application programmers try their hands on library/framework design and come up
with something awfully stiff, or excessively complicated design for no apparent reason!
Ok, enough rant about my day job.

Let’s BURN IT! BURN BABY BURN!

27

Burn the Firmware!!!

Technically, there are several steps.

1. Compile (or build)

2. Link the binary

3. Burn the binary into the SRAM of the SAM4S chip.

But, the Atmel Studio makes it easy for us. Just press the [Run] button, and it will do all of
the above. Ok, ok, the button is really labelled “Start Debugging.”

28

Make sure the Hempstick_SAM4S_XPLAIN_Pro project is selected (and highlighted), then

press the button on the toolbar. If everything compile correctly, it should start upload-
ing the build artifact (the binary) up to the chip. The compile log will have a lot of warn-
ings... don’t worry, they are normal.

It should say “Running...” on the lower left corner status bar. If the burning is successful, it
should also place the SAM4S chip under debugging mode. You are debugging it now.

If there are any error during the compilation, it will show you the errors without burning.

If you do not wish to place the SAM4S chip under debugging mode, then use the menu
[Debug] -> [Start without debugging].

29

Now, plug in another micro USB cable between the SAM4S USB connector and the host
computer. You should hear the Windows OS dinging you for the new Hempstick USB con-
troller. Go to [Start] -> [Devices & Printers] and see if you have the new controller.

In addition, if you have changed any .h file, like src\config\conf_hempstead.h, I would ad-

vise instead of pressing just the button, you do a two step “clean build” process as
the followings.

1. Select the Hempstick SAM4S XPLAIN Pro project, in the menu [Build] -> [Rebuild
Hempstick SAM4S XPLAIN Pro project].

2. If no error from step 1, press the button.

This is because, sometimes the VisualStudio shell the Atmel Studio is built on does not de-
tect the changes correctly and did not rebuild the affected header or .c files correctly. I am
guessing it’s because the “compiled header files” that are cached incorrectly. Do a clean
build is the programmers’ “cure-it-all”, as opposed Windows users’ reboot.

Now, select the new Hempstick controller, [R-click] -> [Game Controller Settings], and you
should see the following.

30

Wait!!!! Why does it say Hempstead Joystick Controller Due??? I said Hempstead Joystick
Controller 4S!!!

This is because, we used the same VID/PID, and the Windows OS internally caches this in-
formation as a device’s “Friendly Name”! But, inside the Devices & Printers, it says “4S”,
and inside the Game Controllers, it says “Due!” Well, I know there is a way to change
this... but it’s a bit complicated, it requires registry editing... Stupid Windows!

If you figure out an easy way to correct this problem, please please please let me know!

Next up, hardware wiring.

31

Wiring Up Hardware
4

I would highly recommend that you wire up some temporary pots using a prototyping
breadboard, like this one, https://www.sparkfun.com/products/9567, to verify the function-
ality before you do permanent wiring to the physical rudder (or panels). While you are at it,
also order some of these jumper wires, https://www.sparkfun.com/products/9194. They
are very handy for quickly wiring up and rewiring some test circuits without any soldering.
They save a lot of times. Imagine you read the wrong pin name when constructing the cir-
cuit and there are tens of wires in the circuit. The picture below is how my setup looks like.

From the picture, you can see that I have 3 potentiometers plugged into the larger bread-
board, 3 buttons plugged into a smaller breadboard, a Warthog Stick plugged into the
larger breadboard, and a Saleae Logic Analyzer also plugged into the larger breadboard,
all without one single soldering joint.

With this setup, I can quickly rewire by just swapping the jumper wires, change the code,
and verify whether I get it right or not without pulling out any tools like a soldering iron,
plier, or crimper. No tools required, except my hands.

These breadboard & jumper wires are not good for high speed MCUs. Our SAM4S,
120MHz, is quite a high speed one. But, we are not hooking into the high speed part, we
are only using one or two MHz against the TMStick. So, this kind of setup is perfectly fine
for this purpose.

32

https://www.sparkfun.com/products/9567
https://www.sparkfun.com/products/9567
https://www.sparkfun.com/products/9194
https://www.sparkfun.com/products/9194

Mine has a little bit of spaghetti tangle of wires. But, your 3 pots don’t need much. You
don’t even need a breadboard, although I highly recommend one. Without a breadboard,
you would have to split the 3.3V Vcc line and the ground line into three each.

Each pot will need 3 wires, a 3.3V Vcc line, one signal output line, and a ground GND line.
Each pot would have three leads for these. Usually, the middle lead is the output wiper
line. The outside two are either Vcc or GND, depending on which direction you want the
“up.” Connect the pots in 3-wire voltage mode! No 2-wire current mode monkey business!

Each of the Atmel Extension header would have 1 Vcc pin and 2 GND pins. Whenever it’s
marked Vcc, it’s a the 3.3V. There is also a 4 pin power header on the board. This one pro-
vides another 5V header for your 5V peripherals, DO NOT HOOK THIS 5V INTO YOUR
POTS!

33

The Atmel SAM chips are 3.3V devices, and they are not 5V tolerant!!!

YOU WILL DAMAGE THE MCU IF YOU HOOK 5V INTO ANY PIN!!!

Pin Connections

From the previous chapter, we know which pin should go where and where to find that in-
formation. Here’s we will just list them in a table for the wiring job.

Now, wire up your breadboard accordingly. Remember to stop the debugger, then unplug
both the SAM4S and Debug USB cables from the SAM4S XPLAINED Pro board before
you plug/unplug any wire!

I would advise that you do one thing at a time. Change one thing, verify it, then change an-
other. This is a basic scientific method -- never change more than one variable so that if
something goes wrong, you know that variable you just changed is the cause. It is also
very applicable in software programming -- don’t ever change many things and get into a
tangle of mess you don’t know which change you made caused the problem! It’s so obvi-
ous, but believe me you that a lot of the younger programmers that work in my day job pro-
jects don’t get that. And we are talking about “professionals”, not some amateurs hacking
away at home.

34

SAM4S XPLAINED Pro Board SAM4S MCU Function Rudder Pot

3.3V Vcc, Power Header Pin 4 All Pot Vcc

GND, Power Header Pin 2 All Pot GND

Ext 1, Pin 3 ADC 0 Main Pot Signal

Ext 2, Pin 3 ADC 4 Left Toe Brake Pot Signal

Ext 2, Pin 4 ADC 5 Right Toe Brake Pot Signal

Wire one pot, 3 wires only, and verify it by plugging in only the SAM4S USB cable (no de-
bugging this time). You should hear the ding from the Windows OS. Then, go to the [De-
vices & Printers] -> ... -> [Properties] to see the axis value by turning the potentiometer to
see if the value get updated correctly.

Did it update the right axis? Did it rotate in the desired direction?

For swapping the signal wires of pots... you know... you can re-wire them live, I won’t tell.
Once you verify that the wiring is correct for that one pot, label the wires! I don’t care,
Dymo, 3M tape, Sharpie, whatever. Just label them!

Keep adding more axes and verify all functions. Once you have verified these values, cali-
brate them in the Windows game controller window.

Again, my other computer with TARGET on it previously had a T.16000M plugged in and
was called the Chetrs Rudder and Windows remembers that Friendly Name.

35

Now, launch TARGET and see if TARGET can see it. Again, I cannot tell you how, you will
have to figure it out yourself. If you follow the instructions carefully, you should have fig-
ured it out by yourself already.

36

Now, if you can see the new rudder showing up inside TARGET GUI, you can program it
inside TARGET and then run the TARGET script. You should then see in the Devices &
Printers that every TM controllers you have programmed inside TARGET get unplugged
programmatically and a virtual combined controller take their place. [R-Click] on this de-

37

vice -> [Game Controller Properties].  

Now, rotate the pots and see if they change the values correctly on the correct axes.

You can now wire the SAM4S XPLAINED Pro board to the pots of your physical rudder.

But what to do with the physical rudder’s original electronics???

38

DUMP IT!

I can’t even find where my CH rudder’s original main board is. I don’t remember where I
put it. I don’t know, must be in one of the piles of electronics boards.

CAUTION!

If you intend to wire up 5V Hall Effect sensors, you must use at least a voltage divider to
make them into 0 to 3.3V range before you wire them up to the Hempstick. Voltage divid-
ers are not ideal, You are better off using an active Op Amp with some diode clamps to
make sure they never exceed 3.3V output.

I will not go into that. it’s your problem. Maybe search on SparkFun or AdaFruit and they
might have a board just for that.

But I can tell you that Hall Sensors like MLX90316, even though it’s an older generation of
5V Hall Effect Sensor, can be programmed to output only 3.3V by changing it’s output
curve and upper/lower clamping. So that it requires no voltage divider or any external ac-
tive circuits to do the conversion from 5V to 3.3V. You basically feed it 5V power, but the
output is programmed to 0-3.3V (or any range under 5V you program it to).

3.3V is the future in order to go high speed and cram more functions into the MCUs, con-
vert or suffer the slow speed.

That’s it! You have just made a custom Hempstick-based rudder controller.

39

Installing MsysGit & SmartGit
A

When downloading SmartGit, if you don’t
have JRE (Java Runtime Environment in-
stalled, then please download the Smart-
Git version that came with JRE).

First, run the MsysGit installer .exe. Accept
the license agreement, and then you
should come to the install locaition, accept
the default should be fine.

Then you should come to the next page,
uncheck the Windows Explorer Integration.
If you like Windows Explorer Integration,

which gives you context-sensitive menu
when you right click on a file under Git revi-
sion control, fine, check that.ß

40

This following screen is important. Make
sure you select Checkout Windows-style,
commit Unix-style line endings. This is be-
cause, the Hempstick Git repository is
really hosted on a Unix server, all line end-
ings are stored Unix-style, but Windows ap-
plications might not be smart enough to
treat Unix-style line ending correctly so all
lines are displayed in one row -- impossi-
ble to read.

Not only that, if eventually you want to con-
tribute your configuration or code to Hemp-
stick, I will get real pissed if you commit
them as Windows-style line ending, filling
my screen with the extra distracting CR
characters.

Don’t worry, Git will automatically translate
them correctly between Windows- and

Unix-style line endings during checking in/
out.

Now, keep clicking [Next] until you finish
the installation.

Next, run the setup.exe for SmartGit.

41

Keep clicking the [Next] button until it fin-
ishes installation. We are not done yet. The
first time you run SmartGit, it will ask you a
couple of questions.

Go to your desktop and find the newly in-
stalled SmartGit icon, and run it. If you al-
ready have a GitHub account, in the follow-
ing SmarktGit setup, you may select set-
ting up GitHub as your service provider.
Otherwise, select “don’t select a service
provider.”

We don’t really care about GitHub’s “fan-
tastic” Cloud-based service at all. I don’t
trust my destiny to a “Cloud.” Have you
heard it on the news that the Cloud source
control hosting company Code Space got
hijacked and ransomed and lost control of
their Amazon Web Service and perhaps
lost a lot the source code hosted there? I

host my own Git server at home, isolated
by two layers of both hardware & software
firewalls. I only mirror my Git repository up
to GitHub for distribution to the public.

Call me old fashioned, or even paranoid if
you wish. I don’t know their security policy,
backup policy, nor their recovery process,
nothing, nada. I don’t trust my source
code to people who don’t tell me those!
What if they got hacked? Should I audit all
my source code and see if backdoors have
been planted? Can’t happen? Yeah?
SourceForge got hacked twice! Do you
want your USB joystick hosting a virus?
That would be quite a disaster, wouldn’t it?
I mean, that’s the last thing you would sus-
pect. So, you will never find it!

No thank you!

42

43

For the last screen, I recommend that you
check that “Automatic send ‘crash foot-
print....” to help out the author(s) of Smart-
Git. It costs you nothing! He’s generous
enough to grant us non-commercial uses
for free, let’s at least help him back by pro-
viding him with crash report so he can im-
prove it!

After clicking on the [Finish] button, we are
done with the SmartGit setup. You should
see the following screen. Now, on to clon-
ing the libHemp & Hempstick repositories!

Select the menu [Repository] -> [Clone].

We need the URL for libHemp. Launch
your favorite browser, and head to
http://www.github.com. And enter libHemp
in the search box. Click on the result link
“JonahTsai/libHemp”, and you should
come to the next page. On the lower right
corner of the screenshot, you should see
the highlighted URL. Copy that, and paste
into the SmartGit “Repository URL” and
click [Next].

44

http://www.github.com
http://www.github.com

Click the “Browse” button in the next
screen.

Select the c:\workspace\libHemp\ direc-
tory. Create the directory if necessary.

You should end up with the following
screen. The libHemp repository has been
cloned and all the source code and history

45

are already downloaded and put on your
harddrive.

Repeat the same thing to clone the Hemp-
stick repository. And you should end up
like the following.

46

