Jonah Tsai

Hempstick Rudder

Demo

v.1.0.1

Overview

The purpose of this demonstration project & document is to show you how the basics of
how to build a custom Hempstick rudder controller using the Atmel SAM4S XPLAINED Pro
board to read 3x potentiometers (or any voltage source with voltage range of 0 to 3.3V, like
Hall Sensors).

We will assume that you have already installed Atmel Studio v.6.2 or later by following the
instructions in the Hempstick User Guide. We will also assume that you have already down-
loaded the libHemp and Hempstick and opened them in a directory on disk (both must be
under the same directory to avoid having to change the project structure inside Atmel Stu-
dio).

We will demonstrate how to configure the Hempstick configuration files, wire up the poten-
tiometers, compile and burn the firmware to the SAM4S XPLAINED Pro board, and then
show you that the rudder shows up in ThrustMaster TARGET software.

However, due to the fear of DMCA and getting sued, | will omit the crucial part of how to
configure it in order for it to be accepted by the TARGET software. You can either figure
out this part yourself, or you can use vdoy/UJT instead of TARGET.

Why?

Why would you use Hempstick for your rudder?

1. If you have an old game port rudder.

2. Your old rudder has 10 bit (or goodness forbid, 8 bit) resolution. Hempstick is 12 bit,
software oversampled to 14bit.

3. Your rudder does not work with TARGET.

4. You intend to use Hempstick to control more than just the rudder. For instance, you
want to convert your old Cougar to use Hempstick, while also use the same Hemp-
stick board to control your rudder.

5. Just to get some experiences of using Hempstick to build other custom controllers in
the future. In this case, a rudder is the simplest starting point to cut your teeth.

What You Need

- Atmel Studio v.6.2 or newer installed.

- MSysGit & SmartGit (optional)

- libHempstick & Hempstick source code
« An Atmel SAM4S XPLAINED Pro board

- A rudder with potentiometers or hall sensors that outputs 0 - 3.3v (does not matter
whether it’'s a USB or GamePort rudder, we will rip out all the electronics)

- Some wires and connectors to connect the potentiometers to the SAM4S XPLAINED Pro
board

- Tools to do the wiring (that depends on the methods you decide to do the wiring)

Preparations

In this chapter, we will make sure that you have all the software tools installed and config-
ured correctly.

Hempstick & libHemp Source Code

If you have not downloaded Hempstick & libHemp yet, download the zip files now. And un-
zip them into the, say c:\workspace\HempstickDemo\. From here on in this document, |
will use c:\workspace\HempstickDemo\ as the workspace directory, and all relative direc-
tory and file references will be assumed to be under this directory unless we spell out from
c:\. You must make sure they have the path of c:\workspace\HempstickDemo\Hempstick\
and c:\workspace\HempstickDemo\libHemp\.

Using the zip file downloads are the easiest way to get you started. But, if you modify any-
thing, and there is a new release in the Hempstick GitHub repository, you will be forced to
manually “merge” them. That is quite a pain, and sometimes a mission impossible.

Therefore, | highly recommend that you use Git revision control system, like | do. This way,
if there is any update on Hempstick GitHub repository, you can simply issue a pull com-
mand. If there is any conflict, it will tell you about it, then you can try to resolve the con-
flicts.

If you want to use Git, | highly recommend that you use MsysGit & SmartGit. SmartGit is a
very friendly GUI built on top of Git. Git itself is written with command line in mind. But, the

https://github.com/JonahTsai/Hempstick/archive/master.zip
https://github.com/JonahTsai/Hempstick/archive/master.zip
https://github.com/JonahTsai/libHemp/archive/master.zip
https://github.com/JonahTsai/libHemp/archive/master.zip
http://msysgit.github.io/
http://msysgit.github.io/
http://www.apple.com/
http://www.apple.com/

command line arguments are so complicated that even a Unix command line guy like me
try to avoid that when | can. Hence the SmartGit.

For the step-by-step instructions of installing MsysGit & SmartGit to get Hempstick source
code, please see Appendix A.

Opening the Hempstick Project & Testing the EDBG Driver

We have to make sure the Atmel Studio actually installed your USB drivers for EDBG cor-
rectly. The way that the Atmel EDBG works is that there is an additional EDBG chip in the
back of the SAM4S XPLAINED Pro board. This chip connects to the SAM4S chip’s debug
port to control the SAM4S during debugging/programming.

There are two micro USB connectors on the board. One is labeled Debug USB, the other
labeled SAM4S USB. The SAM4S USB connector is connected to the USB port on the
SAMA4S chip, and is what you would use to connect to your computer for it to show up as
a Hempstick controller. The Debug USB connector is actually connected to the EDBG
chip, not the SAM4S chip.

When you connect the Debug USB to your host computer, Windows will automatically
loads up the Atmel EDBG driver, and your Atmel Studio will then know that there is an
EDBG USB device in the system. All debugging/programming commands will be send
from Atmel Studio via USB to the EDBG chip on the board. The EDBG chip then issues
debug/programming commands to the SAM4S chip.

The EDBG thing is wonderful! We used to pay thousands of dollars for hardware debug-
gers per seat! Now it comes free with a USD $39 board! Sure, it’s not as powerful as the
now hundreds, if not thousands, of dollars standalone debugger, but it works fine for devel-
oping Hempstick!

But, this EDBG thing is so new that it’s a bit buggy, particularly the USB driver for it. It
somethings hangs if you do the wrong thing in the wrong order, like disconnecting the De-

bug USB cable while you are in a debuggin session. Don’t do that! The only way to fix it is
to reboot the Windows OS. Adding insult to injury, your Windows OS will not shutdown cor-
rectly when that happens. It will get stuck in the “Shutting down......” screen forever, neces-
sitating hitting the big red button!

Enough of the gripe about the bugs in Atmel EDBG. Now, launch the Atmel Studio.

You should see the Start page.

Start Page - AtmelStudio
File Edit View VAssistX ASF Project Debug Tools Window Help
R SHdd$ BR[(9--E-BER P =] | RAERE GO fEEZ2|0PB B0 RQs

>

i PMERHE Vg aiMa|n b |5EE% 2 T|He |i@-ci &= 3 B 85| |} @ NoDevice § NoTool -

Start Page X ~ Solution Explorer

Get Started Tools Help Latest News

[E] New Project...

Welcome Links and Resources
New Example Project...

[E] Openibiojects i e p—— Welcome to Atmel Studio
= = Get to know Atmel Studio.

User Guide
Getting Started

—i——
Close page after project load — _ T Programming Dialog

Recent Projects

Show page on startup FAQ

R NUETR RN <] Solution Ex...

Show output from: " | 2 l « 2 | 3 I =l

F_,’t JGIANEY (=] Output

Now, plug in a micro USB cable into the Debug USB connector on the SAM4S XPLAINED
Pro board, and then plug the other end into the host development computer. You should
hear a ding, and Windows starts loading the USB driver for the EDBG device.

Once that is done correctly, your Atmel Studio should then show you the SAM4S
XPLAINED Pro page. This means the EDBG connection to the Windows works somehow,
at least the EDBG chip is reporting to Atmel Studio correctly about the board.

SAMAS Xplained Pro - 0142 - AtmelStudio =)
File Edit View VAssistX ASF Project Debug Tools Window Help
P A Cd@ s aB[9 - -5 R b | | AR GO EE(T 208238 HBES A
PR B g S iMa| D> b |eEEEEE T He |- <P 0 E Gy B |i 8 85| 2% <|i #NoDevice § NoTool -

Start Page SAM4S Xplained Pro - 0142 X ~ Solution Explorer v X
MCU board

SAMA4S Xplained Pro SAM4S Xplaine PI’O

Extension

The Atmel SAMA4S Xplained Pro evaluation kit is a hardware platform
to evaluate the Atmel ATSAM4SD32 microcontroller. Supported by the
Atmel Studio integrated development platform, the kit provides easy
access to the features of the Atmel SAM4S and explains how to
integrate the device in a custom design.

New Example Project...

Show page on connect

Atmel Studio Heln: & VAView % VA Outline \?3 Solution Ex...

Output v X
Show output from: " | @ | = | R | =l

ﬁ,'(TGTAEY (=] Output

Ready

Close the Start page and the SAM4S page. They are irrelevant to us for now.

Go to the menu and select [File] -> [Open] -> [Project/Solution...]. There should be a
popup window for file selection. Navigate to the c:\workspace\Hempstick\ and select the
Hempstick.atslIn file, and click [Open].

=
. » Computer » Local Disk (C:) » workspace » HempstickDemo » Hempstick » v Search Hempstick pe)

Organize v New folder = v 0 @

& Downloads i Name Date modified Type Size
=] Recent Places

.git 7/19/2014 5:01 PM File folder
o . Hempstick 7/16/2014 5:16 PM File folder
a Libraries .)
.. Hempstick_SAM4S_XPLAINED_PRO 7/16/2014 5:16 PM File folder
@ Documents .)
J’ Musi .. HempstickDue 7/16/2014 5:16 PM File folder
usic
) . N Hempstick.atsln 7/16/2014 5:15PM ATMEL Studio 6.2 ... 2KB
[Pictures =
I" B videos
+J Homegroup —
1% Computer
m &, Local Disk (C)
“! Network %
File name: v [AII Project Files (*.atsIn;*.cpppn v]

| Open |v| | cancel |

You should see the following screen after loading the “solution.”

File Ed

ew VAssistX ASF Project Build Debug Tools

Window Help
_sﬂ'@__l'ﬁh]ﬁlﬁ LE| _)_'l)|4 = '\;1]':-”[5]‘3{’ DNJ‘Debug

-}
PR Y g ad|[on b |eSEE2E = T | Hx |- i & 2) B S| @8 | 2 o|i nATSAMBXBE § NoTool -

|| = Bl B oA - L S

s i o=

Solution Explorer

(@l Solution 'Hempstick' (3 projects)
> Hempstick
b

Hempstick_SAM4S_XPLAINED_PRO
HempstickDue

@ ASF.. @ VAV.. €

Properties

Hempstick Solution Properties
&=
Show output from: | XDK Packaging

Active config

Debug|ARM

19 [@y | %=

F} TGIAEY (=] Output

Now, on the right Solution Explorer panel, select the Hempstick_SAM4S_XPLAIN_Pro pro-
ject. And then, go to the menu, select [Tools] -> [Device Programming].

Tool Device Interface Device signature Target Voltage
EDBG ~v| ATSAM4SD32C ~ [swD ~|[Apply| notread 3 ‘1
Select tool, device and interface. '

You should be able to see under the upper left corner [Tool] drop down box, there are at
least two choices. One is EDBG.... and the other is Simulator. The EDBG... is obviously the

EDBG chip on the SAM4S XPLAINED Pro board, and the other one is the software chip
simulator. Yes, you can save some time for some of your coding by using the software

simulator, but there are things that it cannot simulate, USB is one of them. Well, at least it
cannot simulate USB wire signals to the host computer to simulate a real USB device.

If you do not see the EDBG drop down option, your EDBG driver installation is probably in-
correct during the Atmel Studio installation. | had a problem that | was using Atmel Studio
6.1 for developing Hempstick, when v.6.2 came out supporting more boards, Atmel said
that 6.1 and 6.2 can co-exist on the same system.... Not true... at least the USB driver for

EDBG does no work right when both 6.1 and 6.2 are installed on the same system. It not
only does not work in 6.2, it also rendered 6.1’s EDBG non-functional. | had to manually un-
install everything, including 6.2, 6.1 and all the Atmel Tool Chain, USB drivers, and ASF,
everything Atmel, reboot and reinstall only 6.2.

Try that if you have problem completing the following steps.

Now, select [EDBG], and then it should automatically populate the Device field and Inter-
face field. If not, select them as what the previous screenshot shows.

Then, click the [Apply] button. And you should see the SWD Clock slider showing up.

| -DBG (ATML1803(w‘ElJ X o
Tool Device Interface Device signature Target Voltage
rsawisozzc~ [swo_<[Avoly] |- (o] [|
Interface settings SWD Clock
Tool information _} 0 Hz
Device information The clock frequency should not exceed target CPU speed * 10. w
Memories
GPNVM Bits et

Lock bits '
Security

Sometimes, when you click on the [Apply] button, it might detect that your EDBG chip has

10

an older version of firmware, and you must update the firmware before you can continue
(Atmel Studio will automatically guide you through the EDBG firmware update process). At-
mel Studio always ship with newest firmware for every debugger firmware they support, in-
cluding the EDBG. Atmel Studio must operate with the same version of firmware as what’s
on the debugger, and that would be the latest version! Let it update the firmware!

However, if you are running the Windows under VMware, like | do. This update of firmware
might not work. What the update EDBG firmware process does is that Atmel Studio will
instruct the EDBG chip to go into a bootloader mode, using the same VID/PID and then
send over the new firmware for update. Unfortunately, VMWare under a Mac that | use is
not able to detect that change when it still uses the same VID/PID. This would cause the
EDBG USB driver to go funky. Atmel Studio will find the update of firmware failed because
it is not able to detect the bootloader device, while the EDBG USB driver, | guess, keeps
waiting for a bootloader device to show up. Thus, the EDBG USB driver is completely un-
usable at the point. And you would have to reboot the Windows VM.

The only workaround | know for this problem is to update the firmware on a physical Win-
dows machine and then take the updated board back to the development VM.

Why developing a Windows thing on a VM under a Mac? See, the Mac is my main desk-
top, and | run multiple Windows VMs (and Linux too) under it. One Windows VM has all the
development tools, while another Windows VM serves as a target machine that has abso-
lutely no contamination from the development tools! So, for the debugger USB | instruct
VMWare to connect it to the development VM, while for the SAM4S USB, | instruct
VMWare to connect to the target VM. This way, not only the target VM is uncontaminated
to ensure that it works with a vanilla Windows installation, if for some reason the USB
driver (if | ever write one) messes up the target VM and it no longer boots, | can easily
whack the VM and reinstall, without having to install all the development tools! You have to
understand that setting up a development machine takes a long time, installing 20/30 dif-
ferent development tools is very common and you have to make sure they are all config-
ured and working correctly. | am not going to put an under development buggy kernel
mode driver on such a development machine!!!

11

Now, click on the upper right [Read] button. You should now see the Device signature
gets populated. This is the unique chip Id read back from the SAM4S chip via the EDBG
channel. And you should also see the Target Voltage read as 3.3V. Now we have just veri-
fied that your EDBG chip and its USB driver works.

“ “DBG (ATML180: — i X ,Y

Tool Device Interface Device signature Target Voltage

ATSAMASD32C v [SWD | Apply| 0x29A70EE0 33V 3

Interface settings SWD Clock

I

Tool information ’

o) 0 Hz
Device information The clock frequency should not exceed target CPU speed * 10. "
Memories

GPNVM Bits
Lock bits
Security

Set

Reading device ID...0K

E] Reading device ID...OK

Close

While you are here, slide that SWD Clock slider all the way to the right and click [Set],
please. And close this window.

12

Tool Device Interface Device signature Target Voltage

ATSAM4SD32C ~ [SWD ~|[Apply| 0x29A70EED 33V ¥

Interface settings SWD Clock

Tool information ’ 12 MHz

Device information The clock frequency should not exceed target CPU speed * 10.

Memories .
GPNVM Bits et
Lock bits

Security

Setting clock value...OK
Getting clock value...OK
Setting interface settings... OK

E] Setting interface settings... OK

Go to the Solution Explorer again, select the Hempstick_SAM4S_XPLAIN_Pro project
again, [R-Click] -> [Properties]. And you should see the following screen. Select the [Tool]
tab on the left if you have to. You should see the [Selected Debugging Interface] set to

EDBG..., [Interface] set to SWD, and the [SWD Clock] set to 12MHz. If they are not so, set

them so and save the project with [Ctrl-S].

13

File Edit View VAssistX ASF Project Build Debug Tools Window Help
- A S d 4 B9 -5 [R D [pbug || BB O-fEEZ2 (0P BeIADA-
B D O A | 2 u b | &d O [(F %z = W ATSAM4SD32C 7§ SWD on EDBG (ATML1803040200000142) -

Hempstick_SAM4S_XPLAINED_PRO* X ~ Solution Explorer

=

Build (@l Solution 'Hempstick' (3 projects)
Hempstick

Build Events > Hempstick_ SAM4S_XPLAINED_PRO
HempstickDue

Toolchain Selected debugger/programmer

Device EDBG = ATML1803040200000142 v‘ Interface: |[SWD ~

Tool
B ASF.. @ VAV.. SEVA..

Advanced
SWD Clock = Properties

12.00MHz

The clock frequency should not exceed target CPU speed * 10.

Show output from: | XDK Packaging " | .; | v'-‘J = | =K | =

B Error List |5 Output

We are done verifying the Atmel Studio and the EDBG! Now we can finally go do the real
work of making a rudder controller!!!

14

Configure & Build a Custom
Hempstick Rudder Controller

Hempstick comes with several projects inside the Hempstick.atsIn “solution.” A solution is
a Microsoft Visual Studio way of organizing several related projects. Each project contains
the complete collection of files to product a final “artifact.” In the Hempstick solution, there
are initially 3 projects.

. Hempstick
ll. Hempstick_ SAM4S_XPLAIN_Pro
lll. Hempstick_Arduino_Due

The Hempstick project does not support any board. It is a generic Hempstick project other
board-specific projects are based on. You need not concern yourself with this project un-
less you are trying to support additional boards.

In this demo rudder project, we will be using the Hempstick_SAM4S_XPLAIN_Pro project.
From here on, we will only use files under this project. So, any references to file names are
under this project, unless we specifically indicate otherwise.

The Hempstick_SAM4S_XPLAIN_Pro project, by default, comes with the following fea-
tures.

- 64 buttons.
- 8 axes.

- The first 24 buttons are configured to read a TM Stick (Cougar or Warthog sticks).

15

« Runs at 120MHz.
- USB report rate is 1,000Hz (the max. a full -speed USB connection can do.)

Yes, the SAM4S chip is capable of High-Speed USB enabling even higher report rate, but
for a joystick or rudder, you really don’t need anything higher than that. Humans can only,
on average, do about 200ms response. That is, starting you see something to react to it
with muscle movements, it takes about 200ms. We are already reporting 200 times more
than that. Sure, we do need more than 5 reports per second to “predict” in between ac-
tions. But think about it this way. Your screen refresh rate is probably going to top out at
120Hz, but we are already reporting more than 8 times of that. You don’t need anything
higher than that, period!

However, it would benefit from even higher USB report rate if in the future we hook up
Hempstick to Ethernet and other more advanced machine processing, but not now for a
lowly rudder or controlling some instrument panels.

What We Want to End Up With

We just need 3 axes, find the three pins and connect them to 3 potentiometers. That’s it.

What about the built-in 64 buttons and the other 5 additional axes? Who cares? We don’t
connect them. The host computer is still going to get reports about their values, but they
are full of junk data. All buttons will get “not-pressed” report values. And the other 5 axis
reports will get junk data in there. Do you care? | don’t. just don’t configure those extra but-
tons and axes in your sim and you are good.

To really get rid of the unneeded 5 axes and 64 buttons, it would require some more ad-
vanced customizations, like changing the USB HID report descriptor. It’s a little bit more
advanced topic than this quick rudder project is about. We will get into that some other
time.

16

However, we will go into what are needed to change your VID/PID, and the manufacturer
and product name. And we will show you how to verify the functionality with hardware
pots, and then in Windows.

Modify Top Level USB Controller Information

Modify VID/PID

Open the src\config\conf_usb.h file, and look for the following two lines.
#define USB_DEVICE_VENDOR_ID 0x44F

#define USB_DEVICE _PRODUCT ID 0xB10A

The Vendor Id 0x44F is ThrustMaster’s VID. OxB10A is T.16000M’s PID. You need to
change these to what you want and be careful not to collide with other USB devices’ VIDs/
PIDs in the system.

The easiest way for you to find a valid VID/PID is to... use other Vendor’s VID/PID! Plug in a
device you wish to “masquerade” as into your Windows OS. Then go to [Start] -> [Devices
& Printers] , select the newly plugged in USB controller [R-Click] -> [Properties] -> [Details]
tab -> [Hardware Ids] on the Property drop down. And you should see something similar to
the following.

17

General | Driver | Details

{ !m‘ HID-compliant game controller

Property

Hardware Ids

Value

| HID\VID_044F&PID_B10A&REV_0800

HID\VID_044F&PID_B10A
HID_DEVICE_SYSTEM_GAME
HID_DEVICE_UP:0001_U:0004
HID_DEVICE

OK

If you have a Mac. That’s even better. Go look for an “deprecated” application from Apple

called USB Prober.app, and you’d get something similar to the following.

18

e OO0 USB Prober
Kernel Extensions = IORegistry | USB Logger | Port Status |
|| Refresh Automatically | Refresh | [| Probe suspended devices Save Output
VFull Speed device @ 11 (Ox1A137000):uiiiiiiiniennnnannannannnn Composite device: "Hempstead Joystick Controller 4S"
» Number Of Endpoints (includes EP@):
¥Device Descriptor
Descriptor Version Number: 0x0200
Device (Class: 2 (Composite)
Device Subclass: 0
Device Protocol: /]
Device MaxPacketSize: 8
Device VendorID/ProductID: 0x044F/0xB10A (ThrustMaster, Inc.)
Device Version Number: 0x0800
Number of Configurations: 1

Manufacturer String:
Product String:
Serial Number String:
¥ (Configuration Descriptor (current config)
b Length (and contents):
Number of Interfaces:
Configuration Value:
Attributes:
MaxPower:
Vinterface #0 - HID
Alternate Setting
Number of Endpoints
Interface Class:
Interface Subclass;
Interface Protocol:
VHID Descriptor
Descriptor Version Number:
Country Code:
Descriptor Count:
¥Descriptor 1
Type:
¥length (and contents):
Raw Descriptor Chex)
Raw Descriptor Chex)
Raw Descriptor (hex)
Raw Descriptor (hex)
¥ Parsed Report Descriptor:
Usage Page

1 "Hempstead"

2 "Hempstead Joystick Controller 4S"

3 nqn

34

1

1

OxC0 (self-powered)
100 ma

(HID)

eSO wer e

2x0111
)
1

0x22 (Report Descriptor)

61

0000: 05 01 09 04 A1 91 05 @9
0910: 35 00 45 91 75 91 95 40
9020: 09 32 99 33 99 34 99 35
9030: 3F 15 09 26 FF 3F 75 10

(Generic Desktop)

19 91 29 3F 15 99 25 01
81 22 95 91 @9 30 29 31
99 37 @9 36 35 00 46 FF
95 98 81 22 (9

See? It not only gives you VID/PID, it even gives you the USB descriptors, including both

binary & parsed version. This is very useful when we get into the more advanced topic of

modifying the USB descriptors in Hempstick.

Modify Manufacturer & Product Name

In the same config\conf_usb.h file, find the following lines.

#define USB_DEVICE_ MANUFACTURE_NAME
#define USB_DEVICE PRODUCT NAME
#define USB_DEVICE SERIAL NAME i

"Hempstead"
"Hempstead Joystick Controller 4S"

19

Change them to whatever you wish. Put your Call Sign on it! Why would you want to use
my call sign???!!!

| would also advise that you keep the line USB_DEVICE_SERIAL_NAME “1” there. Putting
this serial number there allows you to plug the controller into one USB port and then the
next time you plug it into another USB port and Windows OS will remember that same set-
ting for the same device instead of treating it as a different USB device.

Configure the ADC & Buttons

What to configure? Nothing really!

The default Hempstick SAM4S XPLAIN Pro project gives you 64 buttons and 8 axes. All 8
axes are assigned correctly to certain ADC pins, but not all buttons are assigned. In fact,
the default setting turns on the TMStick module so the first 24 USB buttons are automati-
cally assigned to various TMStick buttons.

We need to at least turn off the TMStick module. And if desirable, find the ADC pins we
wish to use and reassign them. Technically, you could just use the default ADC pin assign-
ment and wire your pots accordingly, but we are going to demonstrate how to re-map
these ADC pins to different USB axes.

Turn on/off the TMStick

Open the fire src\conf\config_hempstead.h and find the following line.

#define CONF_ENABLE TM_STICK IN BUTTON 1

Change it to 0 and save the file.

#define CONF_ENABLE TM_STICK IN BUTTON 0

20

That’s it. Technically, you are ready to burn the Hempstick firmware.

But, it’s worthwhile to explain a little bit more in case you wish to remap the ADC pin to
USB axes mapping, even though we have explained this in the Hempstick User’s Guide
document already. We never explained where to find these information. We will do it here.

Re-Assign ADC Pins
Let’s take a peek at the SAM4S specification sheet, just a page.

If you take a look at the PA17 row in the next screenshot, you’d find that it contains multi-
ple peripheral functions. There are so many functionalities implemented on the SAM4S
chip, it’s impractical to route all of them out to each pin. | mean, the SAM4S chip version
we use already has 100 pins, if Atmel route every peripheral function out to dedicated indi-
vidual pins, the chip would probably have something like at least 300 pins. Pins are expen-
sive to route out and you probably don’t need all of them all at once. So, Atmel “multiplex”
the pins/functions. This is a very common practice in the industry, not just Atmel doing it.

The PA17 pin has 5 functions. They are:
- TD

- PCK1

- PWMH3

- ADO

- Unlisted GPIO

We are interested in the ADO function. This is the channel O of the on die 12 bit ADC. This
would be PA17 pin’s “Extra Function.” Extra functions in Atmel chips are usually config-
ured at reset (reboot) automatically, so there is no need to explicitly configure it. But, if we
wish to use the PA17 pin not for ADC but for its PWMHS3 function, then we need to explic-
itly configure the PA17 pin to use Peripheral C function. Note that GPIO function is not
listed in the table. But most of pins can be configured as GPIO (as Hempstick buttons).

21

e 00 |« Atmel_11100_32-bit-Cortex-M4-Microcontroller_SAM4S_Datasheet.pdf (page 40 of 1,111) ¥
D (e @[z FEANERNERC)

11.21 PIO Controller A Multiplexing

Table 11-2. Multiplexing on PIO Controller A (PIOA)
1/0 Line Peripheral A Peripheral B Peripheral C
PAO PWMHO TIOAO A17
PA1 PWMH1 TIOBO A18
PA2 PWMH2 SCKO DATRG
PA3 TWDO NPCS3
PA4 TWCKO TCLKO
PAS RXDO NPCS3
PA6 TXDO PCKO
PA7 RTSO PWMH3
PA8 CTSO0 ADTRG
PA9 URXDO NPCS1
PA10 UTXDO NPCS2
PA11 NPCSO0 PWMHO
PA12 MISO PWMH1
PA13 MOSI PWMH2
PA14 SPCK PWMH3
PA15 TF TIOA1 WKUP14/PIODCEN1
PA16 TK TIOB1 WKUP15/PIODCEN2
PA17 TD PCK1 ADO
PA18 RD PCK2 AD1
PA19 RK PWMLO AD2/WKUPS
PA20 RF PWML1 AD3/WKUP10

Extra Function
WKUPO
WKUP1
WKUP2

System Function Comments

WKUP3
WKUP4

XIN32
XO0UT32

PWMFI0

WKUP8

PA21

PCK1

AD8

64/100 pins versions

NPCS3

ADS

64/100 pins versions

PWMHO

PIODCCLK

64/100 pins versions

PWMH1

PIODCO

64/100 pins versions

PWMH2

PIODC1

64/100 pins versions

TIOA2

PIODC2

64/100 pins versions

TIOB2

PIODC3

64/100 pins versions

TCLK1

PIODC4

64/100 pins versions

TCLK2

PIODC5

64/100 pins versions

NPCS2

WKUP11/PIODC6

64/100 pins versions

PCK2

PIODC7

64/100 pins versions

11.2.2 PIO Controller B Multiplexing

SAM4S [DATASHEET]

40

11100D-ATARM-15-Apr-13

Now, let’s take a look at the User’s Guide for the SAM4S XPLAINED Pro board. This page
shows you on the SAM4S XPLAINED Pro board, the pin functions of the Ext 1 connector.

® 00 |« Atmel-42075-SAM4S-Xplained-Pro_User-Guide.pdf (page 11 of 21) "
Zy)(le | @][=] EARIEREIC |

Hardware user guide

Connectors

This chapter describes the implementation of the relevant connectors and headers on SAM4S Xplained Pro
and their connection to the ATSAM4SD32C. The tables of connections in this chapter also describes which
signals are shared between the headers and on-board functionality.

/0 extension headers

The SAM4S Xplained Pro headers EXT1, EXT2 and EXT3 offers access to the I/O of the microcontroller in
order to expand the board e.g. by connecting extensions to the board. These headers all comply with the
standard extension header specified in Xplained Pro Standard Extension Header. All headers have a pitch of
2.54 mm.

Table 4.1. Extension header EXT1

m SAM4S pin Function Shared functionality

1 - - Communication line to ID chip on
extension board.

- GND

AD[0]

AD[1]

GPIO PIOD Interface Header
GPIO PIOD Interface Header
PWMHO PIOD Interface Header
PWMLO

WKUP1/GPIO

GPIO DGI_GPIO0 on EDBG
TWDO EXT2 and EDBG
TWCKO EXT2 and EDBG
USART1/RXD1 EXT2

USART1/TXD1 EXT2

SPI/NPCS[0]

SPI/MOSI EXT2, EXT3, LCD connector (EXT4) and
EDBG

SPI/MISO EXT2, EXT3, LCD connector (EXT4) and
EDBG

18 SPI/SPCK EXT2, EXT3, LCD connector (EXT4) and
EDBG

18 - GND
20 - vCC

© O N O A WwWwN

— B - EY - By
o A W N - O

-
~

Table 4.2. Extension header EXT2

[PinonEXT2 | SAMAS pin Function Shared functionality

1 - - Communication line to ID chip on
extension board.

GND

DGI_GPIO2 on EDBG
DGI_GPIO3 on EDBG

Atmel SAM4S Xplained Pro [USER GUIDE] 11

Atmel-420758-MCU-Atmel SAM4S Xpiained Pro-USER GUIDE-03/2013

23

From this table, we see that Ext1:3 is the ADCJ0] for PA17 pin. We need three of these,
let’s pick PA17, PA18, and PBO0. So, we want it to end up like this.

- PA17 (ADCO) maps to Z (main rudder axis)
- PA18 (ADC1) maps Rx (left toe brake)
- PBO (ADC4) maps Ry (right toe break).

Now, open src\conf\config_usb.c file and find the following entry.

//! HID report descriptor for standard HID mouse
UDC DESC STORAGE udi_hid joystick report desc tudi hid joystick report desc = {
{

0x05, 0x01, // USAGE_PAGE (Generic Desktop)
0x09, 0x04, /I USAGE (Joystick)

Oxal, 0x01, // COLLECTION (Application)
0x05, 0x09, /I USAGE_PAGE (Button)

0x19, 0x01, // USAGE_MINIMUM (Button 1)
0x29, 0x3f; // USAGE_MAXIMUM (Button 63)
0x15, 0x00, // LOGICAL _MINIMUM (0)

0x25, 0x01, // LOGICAL MAXIMUM (1)
0x35, 0x00, // PHYSICAL MINIMUM (0)
0x45, 0x01, // PHYSICAL MAXIMUM (1)
0x75, 0x01, // REPORT SIZE (1)

0x95, 0x40, // REPORT_COUNT (64)

0x81, 0x22, // INPUT (Data,Var,Abs,NPrf)
0x05, 0x01, /I USAGE_PAGE (Generic Desktop)
0x09, 0x30, // USAGE (X)

0x09, 0x31, /I USAGE (Y)

0x09, 0x32, // USAGE (Z)

0x09, 0x33, /I USAGE (Rx)

0x09, 0x34, /I USAGE (Ry)

0x09, 0x35, /I USAGE (Rz)

0x09, 0x37, /' USAGE (Dial)

0x09, 0x36, /" USAGE (Slider)

0x35, 0x00, // PHYSICAL MINIMUM (0)
0x46, 0xff, 0x3f, // PHYSICAL MAXIMUM (16383)
0x15, 0x00, /" LOGICAL_MINIMUM (0)

0x26, 0xff, 0x3f, // LOGICAL MAXIMUM (16383)

0x75, 0x10, // REPORT SIZE (16)

0x95, 0x08, // REPORT_COUNT (8)
0x81, 0x22, // INPUT (Data, Var,Abs,NPrf)
0xc0 // END COLLECTION

}

The above is the default USB HID report. Don’t worry about all the things you don’t know
what they do. Just look at the order of the USAGE(X)... rows.

It says, the first axis, the 0 axis, is X, axis 1 is 'Y, etc. We want axes 3, 4, and 5.
So, we will have the followings.

- PA17 (ADCO) maps to Z (main rudder axis), USB axis 3

- PA18 (ADC1) maps Rx (left toe brake), USB axis 4

- PBO (ADC4) maps Ry (right toe break), USB axis 5.

Now, let’s go rearrange the axis mapping in Hempstick. Open the file
src\config\conf_hempstead.c and find the following entries.

rtos_adc data type g adc data = {

.data= {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0},
#ifdef CONF_BOARD_SAM4S XPLAIN PRO

.channel flags = {ADC_CHANNEL ENABLE MASK, 0, 0, 0, ADC_CHANNEL ENABLE MASK, ADC CHAN-
NEL ENABLE MASK, 0, ADC_CHANNEL ENABLE MASK, ADC CHANNEL ENABLE MASK, ADC CHAN-
NEL ENABLE MASK, 0, 0,0, ADC_CHANNEL ENABLE MASK, ADC CHANNEL ENABLE MASK, 0},
#elif defined(CONF_BOARD ARDUINO_DUE)

.channel flags = {0, ADC_CHANNEL ENABLE MASK, ADC CHANNEL ENABLE MASK, ADC CHAN-
NEL ENABLE MASK,0,0,0,0,0,0,0,0,0,0,0, 0},
#endif

.channel mapping = {0, UINT8 MAX, UINT8 MAX, UINT8 MAX, 1,2, UINT8 MAX, 3,4,5, UINT8 MAX, UINT8 MAX,
UINT8 _MAX, 6,7, UINT8 MAX},

.num_channel enabled = 0,

.adc_config =0,

.mutex = NULL,

.rtos_task semaphore = NULL,

.pdc_sample data= {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0}

25

Ignore the entries under #elif defined(CONF_BOARD_ARDUINO_DUE). We are not using
this board.

In the .channle_flags = {.....} array, this is the 0-based index for ADC channels. This array is
used to tell Hempstick which ADC channels are enabled. The default enables the following

8 ADC channels.

0,455, 'F,<8,°9,:13, 14

Why? That’s the pins routed out on the SAM4S XPLAINED Pro boards. Note that, some of

the pins are not marked as AD[?] on the board’s User’s Guide, but marked as something
else, like the PB2 and PB3 pins are marked as USART1/TXD1 and USART1/TXD1. We
don’t use serial ports on Hempstick, so we reconfigure them as ADC pins.

Another one is the PA18 pin, which is the ADC1 channel. But we are not using it as an
ADC pin, because this pin’s another function, RD, which is crucial for running the SSC
module to read the TMStick. So, we trade one ADC channel for the ability to read the

TMStick. Ok, no use of the PA18 pin for ADC[1].

Hold on, we can’t use PA18 pin for ADC? We need to change our mapping to the follow-
ings.

- PA17 (ADCO, Ext1:3) maps to Z (main rudder axis), USB axis 3
- PBO (ADC4, Ext2:3) maps Ry (right toe break), USB axis 4.
- PB1 (ADC5, Ext2:4) maps Ry (right toe break), USB axis 5.

Now, look at the .channel_mapping array. We have the followings.

channel mapping = {0, UINT8 MAX, UINT8 MAX, UINT8 MAX, 1,2, UINT8 MAX, 3, 4, 5, UINT8 MAX, UINT8 MAX,
UINT8_MAX, 6,7, UINT8_ MAX},

26

The UINT8_MAX entries mean no mapping for those particular ADC channels. But, we find
the default mapping actually maps ADCO to axis 0, ADC4 to axis 1, and ADC5 to axis 2.
That’s not what we want! Let’s correct them. We get the following.

.channel mapping = {3, UINT8 MAX, UINT8 MAX, UINT8 MAX, 4, 5, UINTS MAX, 0, 1,2, UINT8 MAX, UINT8 MAX,
UINT8 MAX, 6,7, UINT8 MAX},

This mechanism allows us to map any ADC channel to any USB axis. Very flexible, but
also a bit complicated. You must make sure that no double mapping (no crash if you do,
but one channel will disappear, but it could be useful if you want to use one pot linked to
two USB axes, say one pot to control two throttles; as to why you would want to do that,
none of my business!).

Why so complicated? Well, the plan is that in the future, | might implement Ethernet or
USB storage so that it’s possible to remap them while the joystick is running. Imagine you
send an UDP datagram to the joystick or plug in an SD card with different configuration,
and Hempstick remaps all the axes and buttons? Or, the Hempstick provides you with a
web page for reconfiguring the axes and buttons mapping? The possibility is endless, but
this mapping mechanism must be there in order to support them!

Software framework and library design is quite different from fixed application design. In a
fix application design, it only has to work one and only one way. But in framework/library
design, it has to work in many ways, in particularly it also has to work in ways you can’t
think of yet. We are providing flexibility for what | cannot think of yet, at the expense of a
little complexity. It’s a trade off. This is the most difficult part of software design -- how
much complexity are you willing to trade for flexibility? Experiences count here. | often see
good application programmers try their hands on library/framework design and come up
with something awfully stiff, or excessively complicated design for no apparent reason!
Ok, enough rant about my day job.

Let’s BURN IT! BURN BABY BURN!

27

Burn the Firmware!!!

Technically, there are several steps.
1. Compile (or build)
2. Link the binary

3. Burn the binary into the SRAM of the SAM4S chip.

But, the Atmel Studio makes it easy for us. Just press the [Run] button, and it will do all of

the above. Ok, ok, the button is really labelled “Start Debugging.”

File Edit View VAssistX ASF Project Build Debug Tools Window Help

e R g - e R = A= 11 - RS N AR]

JREFREB GO EEZ2(0PPH 3@

il

DXL B oG i imaly u b |z

conf_usb.c

conf_hempstead.c rtos_adc.c conf_hempstead.h X FETIETEA SAM4S Xplained Pro - 0142

(Eoz = 7 |He | @~ < o] o 1 o) B o} [&5 | o | MATSAMASD32C 7§ SWD on EDBG (ATML1803040200000142) |

Solution Explorer v 31X

{s 1a ~| 2] = 2define TC1 ((Tc)0x40014000U)

SIS

define CONF_NUM_PINS 15

define CONF_TOTAL_NUM_BUTTONS 32

define LED@_GPIO PIO_PC23_IDX
define CONF_SSC_CLOCK_SOURCE_ID ID_TC4

define CONF_SSC_CLOCK_TC TC1

define CONF_SSC_CLOCK_CHANNEL 1

#elif defined(CONF_BOARD_ARDUINO DUE)

define CONF_NUM_PINS 22

define CONF_TOTAL_NUM_BUTTONS 28

// # define LED®_GPIO PIO_PC23_IDX
define CONF_SSC_CLOCK_SOURCE_ID ID_TC8

define CONF_SSC_CLOCK_TC TC2

| # define CONF_SSC_CLOCK_CHANNEL 2

#endif

#define CONF_ENABLE_TM_STICK_IN_BUTTON)

// This is how many bits of ADC sample decimation will be.
vy n J

Output
Show output from: |XDK Packaging 'I | 3 | & |

MRS =] Output

[l Solution 'Hempstick' (3 projects)
| Hempstick
4 | Hempstick SAM4S_XPLAINED_PR
> (=4 Dependencies
> [=d| Output Files
[+3] Libraries

mis

Properties v X

conf_hempstead.h File Properties

S

Custom Tool

28

Make sure the Hempstick_SAM4S_XPLAIN_Pro project is selected (and highlighted), then
|

b
press the == button on the toolbar. If everything compile correctly, it should start upload-
ing the build artifact (the binary) up to the chip. The compile log will have a lot of warn-
ings... don’t worry, they are normal.

File Edit View VAssistX ASF Project Build Debug Tools Window Help
PR Sl d | % R[9S0 R P W [Debug | 2% | JREFRE O EE(Z2 208036883853,
PR/ D g B imaon b|oE(E% =2 T |Ha @i @ B) B o[#8852 o] w#ATSAMASD32C § SWD on EDBG (ATML1803040200000142) -

= =

conf_usb.c conf_hempstead.c rtos_adc.c conf_hempstead.h X FLIETEA) Solution Explorer

~| 2| = 2define TC1 ((Tc *J0x400140000) T A =
define CONF_NUM_PINS 15 [(@l Solution 'Hempstick' (3 projects)
define CONF_TOTAL_NUM_BUTTONS 32 [| Hempstick
define LED@_GPIO PIO_PC23_IDX 4 | Hempstick_SAM4S_XPLAINED_PRO
define CONF_SSC_CLOCK_SOURCE_ID ID_TC4 . [Dependencies
define CONF_SSC_CLOCK_TC TC1
define CONF_SSC_CLOCK_CHANNEL 1
elif defined(CONF_BOARD_ARDUINO_DUE)
define CONF_NUM_PINS 22 4 5 src
define CONF_TOTAL_NUM_BUTTONS 28 (=3 ASF
/ # define LED@_GPIO PIO_PC23_IDX 4 [config
define CONF_SSC_CLOCK_SOURCE_ID ID_TC8 [n] conf_board.h
define CONF_SSC_CLOCK_TC TC2 [n] conf_clock.h
|# define CONF_SSC_CLOCK_CHANNEL 2 Q) conf_hempstead.c
eadiE [h] conf_hempstead.h
|h] conf_mma7341l.h
|n] conf_sleepmgr.h
|€] conf_usb.c
This is how many bits of ADC sample decimation will be. |n] conf_usb.h
It's basically a low pass filter with overlapping running average. |h] FreeRTOSConfig.h
Through trial-n-error, I find that increasing this bit to over 5 (25 == 32) doesn't gain you much. [joystick
I find that with the CONF_ADC_DECIMATION_BITS == 5 and CONF_ADC_OVERSAMPLE_RESOLUTION_INCREASE_BITS == 2, inside ThrustMaster ﬂ asf.h
That is quite an ok performance. ﬁﬁ] main.c
Even the Hall Effect sensor MLX96316 under TM Cougar has worse variation (~@.1%) than that! However, that's not an apple to af
while the values here are not limited nor linear interpolated, so the angles are 120 degrees. If we scale this nhumber up to @] rtos_adc.c
BTW, the MLX9@316 internally was setup with a FIR filter to tamp down the noises. @ rtos_adch

#define CONF_ADC_DECIMATION_BITS 5 E‘?] rtos_button.c
EI'J rtos_button.h

// This is the ADC oversampling to increase the resolution. [ﬁ] rtos_hw_pin_configuration.c
~ 4 m \ E10. & As. B Pro.

> [=d| Output Files
[«al Libraries

#define CONF_ENABLE_TM_STICK_IN_BUTTON)

Watch 2 v 1 X Breakpoints
: New~ | X | 59)3 | &4 9 | 23 % | Columns~ | Search:
Na;ne Labels Condition Hit Count

B¥ Autos E Locals .,E;] Watch1 @WatchZ 3 Breakpoints = Memory 1 B Call Stack B Command Window &8 Immediate Window B Output

Running

It should say “Running...” on the lower left corner status bar. If the burning is successful, it
should also place the SAM4S chip under debugging mode. You are debugging it now.

If there are any error during the compilation, it will show you the errors without burning.

If you do not wish to place the SAM4S chip under debugging mode, then use the menu
[Debug] -> [Start without debugging].

29

Now, plug in another micro USB cable between the SAM4S USB connector and the host
computer. You should hear the Windows OS dinging you for the new Hempstick USB con-
troller. Go to [Start] -> [Devices & Printers] and see if you have the new controller.

@ <« Hardware and Sound » Devices and Printers

Search Devices and Printers P ’

Add a device Add a printer = - (7]
X

Windows can display enhanced device icons and information from the Internet. Click te change...

4 Devices (6)

> P e B

Generic Non-PnP Vlrtual Bluetooth VMware Virtual VMware, VMware WIN- VSN7K9H83 Hempstead
Monitor Adapter USB Mouse Virtual S SCSI Joystick
Disk Device Controller 45

4 Printers and Faxes (4)

In addition, if you have changed any .h file, like src\config\conf_hempstead.h, | would ad-

b |

vise instead of pressing just the - button, you do a two step “clean build” process as
the followings.

1. Select the Hempstick SAM4S XPLAIN Pro project, in the menu [Build] -> [Rebuild
Hempstick SAM4S XPLAIN Pro project].

b
2. If no error from step 1, press the _I button.

This is because, sometimes the VisualStudio shell the Atmel Studio is built on does not de-
tect the changes correctly and did not rebuild the affected header or .c files correctly. | am
guessing it’s because the “compiled header files” that are cached incorrectly. Do a clean

build is the programmers

cure-it-all”, as opposed Windows users’ reboot.

Now, select the new Hempstick controller, [R-click] -> [Game Controller Settings], and you
should see the following.

30

&

4—». These settings help you configure the game controllers installed on
your computer.

Installed game controllers

Controller
Hempstead Joystick Controller Due

Wait!!!l Why does it say Hempstead Joystick Controller Due??? | said Hempstead Joystick
Controller 4S!!

This is because, we used the same VID/PID, and the Windows OS internally caches this in-
formation as a device’s “Friendly Name”! But, inside the Devices & Printers, it says “4S”,
and inside the Game Controllers, it says “Due!” Well, | know there is a way to change

this... but it’s a bit complicated, it requires registry editing... Stupid Windows!

If you figure out an easy way to correct this problem, please please please let me know!

Next up, hardware wiring.

31

Wiring Up Hardware

| would highly recommend that you wire up some temporary pots using a prototyping
breadboard, like this one, https://www.sparkfun.com/products/9567, to verify the function-

ality before you do permanent wiring to the physical rudder (or panels). While you are at it,
also order some of these jumper wires, https://www.sparkfun.com/products/9194. They

are very handy for quickly wiring up and rewiring some test circuits without any soldering.
They save a lot of times. Imagine you read the wrong pin name when constructing the cir-
cuit and there are tens of wires in the circuit. The picture below is how my setup looks like.

From the picture, you can see that | have 3 potentiometers plugged into the larger bread-
board, 3 buttons plugged into a smaller breadboard, a Warthog Stick plugged into the
larger breadboard, and a Saleae Logic Analyzer also plugged into the larger breadboard,
all without one single soldering joint.

With this setup, | can quickly rewire by just swapping the jumper wires, change the code,
and verify whether | get it right or not without pulling out any tools like a soldering iron,
plier, or crimper. No tools required, except my hands.

These breadboard & jumper wires are not good for high speed MCUs. Our SAM4S,
120MHz, is quite a high speed one. But, we are not hooking into the high speed part, we
are only using one or two MHz against the TMStick. So, this kind of setup is perfectly fine
for this purpose.

32

https://www.sparkfun.com/products/9567
https://www.sparkfun.com/products/9567
https://www.sparkfun.com/products/9194
https://www.sparkfun.com/products/9194

Mine has a little bit of spaghetti tangle of wires. But, your 3 pots don’t need much. You
don’t even need a breadboard, although | highly recommend one. Without a breadboard,
you would have to split the 3.3V Vcc line and the ground line into three each.

Each pot will need 3 wires, a 3.3V Vcc line, one signal output line, and a ground GND line.
Each pot would have three leads for these. Usually, the middle lead is the output wiper
line. The outside two are either Vcc or GND, depending on which direction you want the
“up.” Connect the pots in 3-wire voltage mode! No 2-wire current mode monkey business!

Each of the Atmel Extension header would have 1 Vcc pin and 2 GND pins. Whenever it’s
marked Vcc, it’s a the 3.3V. There is also a 4 pin power header on the board. This one pro-
vides another 5V header for your 5V peripherals, DO NOT HOOK THIS 5V INTO YOUR
POTS!

33

The Atmel SAM chips are 3.3V devices, and they are not 5V tolerant!!!

YOU WILL DAMAGE THE MCU IF YOU HOOK 5V INTO ANY PIN!!!

Pin Connections

From the previous chapter, we know which pin should go where and where to find that in-
formation. Here’s we will just list them in a table for the wiring job.

SAM4S XPLAINED Pro Board SAM4S MCU Function Rudder Pot
3.3V Vcc, Power Header Pin 4 All Pot Vcc
GND, Power Header Pin 2 All Pot GND
Ext: 1, Rin'3 ADC 0 Main Pot Signal
Exti2¥Rin'3 ADC 4 Left Toe Brake Pot Signal
Ext 2, Pin 4 ADC 5 Right Toe Brake Pot Signal

Now, wire up your breadboard accordingly. Remember to stop the debugger, then unplug
both the SAM4S and Debug USB cables from the SAM4S XPLAINED Pro board before
you plug/unplug any wire!

| would advise that you do one thing at a time. Change one thing, verify it, then change an-
other. This is a basic scientific method -- never change more than one variable so that if
something goes wrong, you know that variable you just changed is the cause. It is also
very applicable in software programming -- don’t ever change many things and get into a
tangle of mess you don’t know which change you made caused the problem! It’s so obvi-
ous, but believe me you that a lot of the younger programmers that work in my day job pro-
jects don’t get that. And we are talking about “professionals”, not some amateurs hacking
away at home.

34

Wire one pot, 3 wires only, and verify it by plugging in only the SAM4S USB cable (no de-
bugging this time). You should hear the ding from the Windows OS. Then, go to the [De-
vices & Printers] -> ... -> [Properties] to see the axis value by turning the potentiometer to
see if the value get updated correcitly.

== Hempstead Joystick Controller ... properties

Test the game controller. If the controller is not functioning property, it may
need to be calibrated. To calibrate it, go to the Settings page.

Axes

= Hempstead Joystick Controller ... properties

Settings | Test

Test the game controller. If the controller is not functioning propery, it may
need to be calibrated. To calibrate it, go to the Settings page.

Axes

Z Auds
X Rotation
Y Rotation
Z Rotation
Slider
Dial

Z Axdis
¥ X Rotation
Y Rotation
Z Rotation
Slider
X s /Y Ads | Dial

+

X Ads /Y Ads

Buttons

[OK H Cancel] Apply |

Did it update the right axis? Did it rotate in the desired direction?

Buttons

OK || Cancel || oy

For swapping the signal wires of pots... you know... you can re-wire them live, | won’t tell.
Once you verify that the wiring is correct for that one pot, label the wires! | don’t care,
Dymo, 3M tape, Sharpie, whatever. Just label them!

Keep adding more axes and verify all functions. Once you have verified these values, cali-
brate them in the Windows game controller window.

Again, my other computer with TARGET on it previously had a T.16000M plugged in and
was called the Chetrs Rudder and Windows remembers that Friendly Name.

35

»s Game Controlle u

4—». These settings help you configure the game controllers installed on
% your computer.

Installed game controllers

Controller Status
Joystick - HOTAS Warthog OK
Throttle - HOTAS Warthog 0K
Chetrs Rudder 0K
[Advanced... Properties
QK

Now, launch TARGET and see if TARGET can see it. Again, | cannot tell you how, you will
have to figure it out yourself. If you follow the instructions carefully, you should have fig-
ured it out by yourself already.

36

% T.A.R.G.E.T Command Center V1011304 |— 0%
Fly NOWI i My Controllers (3 USB Connected)
Add Configuration Options
Add a new association first!

ssHowdo[?

== GUI Configuration Files

Custom Stock

-# Resources

Now, if you can see the new rudder showing up inside TARGET GUI, you can program it
inside TARGET and then run the TARGET script. You should then see in the Devices &
Printers that every TM controllers you have programmed inside TARGET get unplugged
programmatically and a virtual combined controller take their place. [R-Click] on this de-

vice -> [Game Controller Properties].

r ~N
»4 Game Controlle u

4—». These settings help you configure the game controllers installed on
your computer.

Installed game controllers

Controller Status
Thrustmaster Combined OK

[Advanced... J Properties

Now, rotate the pots and see if they change the values correctly on the correct axes.

"\ Thrustmaster Combined properties

Test the game controller. If the controller is not functioning propery, it may Test the game controller. If the controller is not functioning propery, it may
need to be calibrated. To calibrate it, go to the Settings page. need to be calibrated. To calibrate it, go to the Settings page.

Axes Axes

Z As .

X Rotation | X Rotation
Y Rotation | Y Rotation
+ + [| Z Rotation

Z Rotation

Throttle | Throttle
X Adis /Y Axis Slider XAds /Y Ads [N Slider

Buttons Point of View Hat Buttons Point of View Hat

HEHHON FHo

OK J[Camcel || sopy [ok J[Cancel || oph

You can now wire the SAM4S XPLAINED Pro board to the pots of your physical rudder.

But what to do with the physical rudder’s original electronics???

DUMP IT!

| can’t even find where my CH rudder’s original main board is. | don’t remember where |
put it. | don’t know, must be in one of the piles of electronics boards.

CAUTION!

If you intend to wire up 5V Hall Effect sensors, you must use at least a voltage divider to
make them into 0 to 3.3V range before you wire them up to the Hempstick. Voltage divid-
ers are not ideal, You are better off using an active Op Amp with some diode clamps to
make sure they never exceed 3.3V output.

| will not go into that. it’s your problem. Maybe search on SparkFun or AdaFruit and they
might have a board just for that.

But | can tell you that Hall Sensors like MLX90316, even though it’s an older generation of
5V Hall Effect Sensor, can be programmed to output only 3.3V by changing it’s output
curve and upper/lower clamping. So that it requires no voltage divider or any external ac-
tive circuits to do the conversion from 5V to 3.3V. You basically feed it 5V power, but the
output is programmed to 0-3.3V (or any range under 5V you program it to).

3.3V is the future in order to go high speed and cram more functions into the MCUs, con-
vert or suffer the slow speed.

That’s it! You have just made a custom Hempstick-based rudder controller.

39

Installing MsysGit & SmartGit

When downloading SmartGit, if you don’t
have JRE (Java Runtime Environment in-
stalled, then please download the Smart-
Git version that came with JRE).

First, run the MsysGit installer .exe. Accept
the license agreement, and then you
should come to the install locaition, accept
the default should be fine.

Select Destination Location
Where should Git be installed?

J Setup will install Git into the following folder.

To continue, dick Next. If you would like to select a different folder, dick Browse.

Browse...

C:\Program Files\Git

At least 81.8 MB of free disk space is required.
http:f/msysait.aithub.iof

< Back][Next >][Cancel

Then you should come to the next page,
uncheck the Windows Explorer Integration.
If you like Windows Explorer Integration,

which gives you context-sensitive menu
when you right click on a file under Git revi-
sion control, fine, check that.

4> Git Setup

Select Components
Which components should be installed?

Select the components you want to install; dear the components you do not want to
install. Click Next when you are ready to continue.

[] Additional icons
. [[] In the Quick Launch
.. [”] On the Desktop
[] windows Explorer integration
() Simple context menu (Registry based)
- i-[C] Git Bash Here
. “[7] Git GUI Here
.. (©) Advanced context menu (git-cheetah plugin)
Associate .git* configuration files with the default text editor
Associate .sh files to be run with Bash

Current selection requires at least 81.8 MB of disk space.
http://msysgit.github.iof

[<Back || Next>

40

} Git Setup

Adjusting your PATH environment
How would you like to use Git from the command line?

@ Use Git from Git Bash only
This is the safest choice as your PATH will not be modified at all. You will only be
able to use the Git command line tools from Git Bash.

() Use Git from the Windows Command Prompt

This option is considered safe as it only adds some minimal Git wrappers to your
PATH to avoid duttering your environment with optional Unix tools. You will be
able to use Git from both Git Bash and the Windows Command Prompt.

(") Use Git and optional Unix tools from the Windows Command Prompt

Both Git and the optional Unix tools will be added to your PATH.

Warning: This will override Windows tools like "find" and "sort". Only
use this option if you understand the implications.

http:/fmsysait.github.iof

<Back |[mNext> | [cancel |

This following screen is important. Make
sure you select Checkout Windows-style,
commit Unix-style line endings. This is be-
cause, the Hempstick Git repository is
really hosted on a Unix server, all line end-

ings are stored Unix-style, but Windows ap-

plications might not be smart enough to
treat Unix-style line ending correctly so all
lines are displayed in one row -- impossi-
ble to read.

Not only that, if eventually you want to con-
tribute your configuration or code to Hemp-
stick, | will get real pissed if you commit
them as Windows-style line ending, filling
my screen with the extra distracting CR
characters.

Don’t worry, Git will automatically translate
them correctly between Windows- and

Unix-style line endings during checking in/
out.

Configuring the line ending conversions
How should Git treat line endings in text files?

@ Checkout Windows-style, commit Unix-style line endings

Git will convert LF to CRLF when checking out text files. When committing
text files, CRLF will be converted to LF. For cross-platform projects,
this is the recommended setting on Windows (“core.autocrlf™ is set to "true®).

() Checkout as-is, commit Unix-style line endings

Git will not perform any conversion when checking out text files. When
committing text files, CRLF will be converted to LF. For cross-platform projects,
this is the recommended setting on Unix (“core.autocrlf™ is set to “input™).

() Checkout as-is, commit as-is

Git will not perform any conversions when checking out or committing
text files. Choosing this option is not recommended for cross-platform
projects (“core.autocrlf” is set to "false”).

http:/imsysait, github.iof

| <Back |[Next> | [cancel |

Now, keep clicking [Next] until you finish
the installation.

Next, run the setup.exe for SmartGit.

Select Destination Location
Where should SmartGit/Hg be installed?

‘ Setup will install SmartGit/Hg into the following folder.

To continue, dick Next. If you would like to select a different folder, dick Browse.

Browse...

C:\Program Files\SmartGitHg

At least 43.9 MB of free disk space is required.

<Back |[mNext> | [cancel

41

Select Additional Tasks
Which additional tasks should be performed?

Select the additional tasks you would like Setup to perform while installing SmartGit/Ha,
then dick Next.

Additional icons:
Create a desktop icon
[] Add Explorer context menu item 'Open in SmartGit/Hg'

< Back][Next >] [Cancel]

Keep clicking the [Next] button until it fin-
ishes installation. We are not done yet. The
first time you run SmartGit, it will ask you a
couple of questions.

Go to your desktop and find the newly in-
stalled SmartGit icon, and run it. If you al-
ready have a GitHub account, in the follow-
ing SmarktGit setup, you may select set-
ting up GitHub as your service provider.
Otherwise, select “don’t select a service
provider.”

We don’t really care about GitHub’s “fan-
tastic” Cloud-based service at all. | don’t
trust my destiny to a “Cloud.” Have you
heard it on the news that the Cloud source
control hosting company Code Space got
hijacked and ransomed and lost control of
their Amazon Web Service and perhaps
lost a lot the source code hosted there? |

host my own Git server at home, isolated
by two layers of both hardware & software
firewalls. | only mirror my Git repository up
to GitHub for distribution to the pubilic.

Call me old fashioned, or even paranoid if
you wish. | don’t know their security policy,
backup policy, nor their recovery process,
nothing, nada. | don’t trust my source
code to people who don’t tell me those!
What if they got hacked? Should | audit all
my source code and see if backdoors have
been planted? Can’t happen? Yeah?
SourceForge got hacked twice! Do you
want your USB joystick hosting a virus?
That would be quite a disaster, wouldn’t it?
| mean, that’s the last thing you would sus-
pect. So, you will never find it!

No thank you!

42

User Information
Hosting Providers
Existing Repositories
Crash Reporting

Steps License Agreement
. Welcome to SmartGit/Hg! Please read the following license agreement carefully. You need to accept it
> License Agreement to continue.
Type of Usage
Git &Hg Bxecutables | |) jcense Agreement for SmartGit/Hg =
SSH Client

Last date of change: 2014-06-02

1 Subject of the Contract: The license terms of syntevo GmbH (hereinafter
called "licensor") are applied for the concession of the rights of use for the
entire or partly use of the object code of the software SmartGit/Hg
(hereinafter called "SOFTWARE") to contractors, juristic persons under public
law or official fund assets in terms of §310 in conjunction with §14 BGB [Civil
Code] (hereinafter called "licensee"). Herewith the inclusion of the licensee's
own terms and conditions is contradicted, unless their validity has explicitly

haan aaraad tn

g

1d and agree to all terms and conditions of this agreement

Steps

License Agreement

‘ < Back [Next >] ‘ Finish

Type of Usage
Choose for what types of repositories you will use SmartGit/Hg.

> Type of Usage
Git & Hg Executables
SSH Client
User Information
Hosting Providers
Existing Repositories
Crash Reporting

(©) Free SmartGit/Hg evaluation for commercial use

You may try SmartGit/Hg free of charge for 30 days.

(©) Registered user, commercial use (support) ‘ Purchase ‘

You have purchased a SmartGit/Hg license and are eligible to use SmartGit/Hg for both commercial and
non-commercial purposes.

License File: H ‘

on-commercial use only (all features, but no support):

You confirm that you will use SmartGit/Hg solely for non-commercial purposes.

< Back] [Next >] ‘ Finish

Is your use non-commercial?

A use (or purpose) is non-commercial only if it is in no manner primarily

int

ended for or directed toward commercial advantage or private monetary

compensation.

When does non-commercial use NOT apply?

Ru

nning SmartGit/Hg for 'non-commercial use only' is NOT PERMITTED, if

your use is in some sense commercial. Examples of COMMERCIAL uses are:

-y

ou are using SmartGit/Hg to work on your company's projects (no

matter whether you are working on open-source projects as well),

-y
fre:

ou are a student and you are using SmartGit/Hg for your work as a
elancer,

- you are using SmartGit/Hg in your spare time to manage the website
source code of your local football club and you are getting paid for that.

In such cases you will need a commercial license.

Not sure?

Co!
we

ntact sales@syntevo.com and explain your intended use in detail, then
may confirm whether a non-commercial license applies.

1 confirm solely non-commercial use

Steps

License Agreement

SSH Client

If you are using SSH to connect to other Git repositories, select what SSH client to use. You can change
it later in the Preferences.

Type of Usage

Git & Hg Executables
> SSH Client

User Information

Hosting Providers

Existing Repositories

Crash Reporting

() Use system SSH client

may be harder to configure and use for new users, but is more flexible

easy to set up and use, supports public key and password authentication

<Back | [Net> | [Finish

Steps

License Agreement

User Information

User name and e-mail will be stored as part of your commits. Here you can configure the default values
which are stored in .gitconfig and .hgrc.

Type of Usage
Git & Hg Executables
SSH Client

> User Information
Hosting Providers
Existing Repositories
Crash Reporting

User Name: Your Handle

E-Mail: you@gmail.com|

Finish

[< Back][Next >]

Steps

License Agreement

Hosting Providers
If you are using a hosting provider, you can provide account details here to simplify working with your
hosted projects.

Type of Usage
Git & Hg Executables
SSH Client
User Information

> Hosting Providers
Existing Repositories
Crash Reporting

|<Don't confn' ure a homH ﬂwldﬂ now> ']
<Don't confiiuve a hostini irovidev now>

Assembla
Beanstalk
Bitbucket
Codebase
Unfuddle

Steps

License Agreement

Hosting Providers

If you are using a hosting provider, you can provide account details here to simplify working with your
hosted projects.

Type of Usage
Git & Hg Executables
SSH Client

User Information
> Hosting Providers
Existing Repositories
Crash Reporting

|GitHub

Account:

Token:

The (AP]) token is a special auto-generated credential which SmartGit/Hg will use to authenticate
at GitHub. It adds another layer of security, as you can easily revoke access by removing the token
from the GitHub front-end.

Generate API Token

SmartGit/Hg can create this token for you by connecting to GitHub. If you prefer to not give your
password to SmartGit/Hg, you can generate the token yourself from the GitHub front-end
(Profile Settings, category ‘Applications’).

GitHub Enterprise instances can be configured in the Preferences, later.

[<Back | [Net> | [Finish

Steps

License Agreement

Existing Repositories
If you already have existing Git or Mercurial repositories, select in what directory they are located, so
SmartGit/Hg can find them.

Type of Usage
Git & Hg Executables
SSH Client
User Information
Hosting Providers

> Existing Repositories
Crash Reporting

Found repository (selected ones will be remembered):

Path
v 0 E:\workspace\bf3
v 0 E:\workspace\bf3-o...

Search In: | Start Search

e]

[<Back | [Net> | [Finisn

43

Steps
License Agreement t
Type of Usage
Git & Hg Executables
SSH Client
User Information
Hosting Providers

> Existing Repositories

Crash Reporting

Steps
License Agreement
Type of Usage
Git & Hg Executables
SSH Client
User Information
Hosting Providers
Existing Repositories

> Crash Reporting

< sew s N =

Existing Repositories
If you already have existing Git or Mercurial repositories, select in what directory they are located, so
SmartGit/Hg can find them.

Found repository (selected ones will be remembered):

Path
0 E\workspace\bf3
E kspace\bf3-org
Search In: D Start h

Ty .)

Crash Reporting

Please help to improve SmartGit/Hg's quality by automatically sending 'crash footprints' which do not
contain any sensitive information. You can change this option later in the preferences.

[V]iAutomatically send ‘crash footprints' after an internal error has occurred

A 'crash footprint’ contains details about your machine (e.g. version of operating system), SmartGit/Hg's
version/build number, the JVM state and where the internal error occurred.

It contains NO POTENTIALLY SENSITIVE INFORMATION like user names, email addresses, file contents, file paths
Or server names.

A sample ‘crash footprint’ can be found at here.

For the last screen, | recommend that you

check that “Automatic send ‘crash foot-

print....” to help out the author(s) of Smart-

Git. It costs you nothing! He’s generous

enough to grant us non-commercial uses

for free, let’s at least help him back by pro-

viding him with crash report so he can im-

prove it!

After clicking on the [Finish] button, we are
done with the SmartGit setup. You should
see the following screen. Now, on to clon-

ing the libHemp & Hempstick repositories!

I h ' ‘ Merge Commit Stage IndexEditor Unstage | Remove Discar g Blame Review

Files x 2 File Filter o EBED 0O
Name st Relative Directory
Changes &
<
o
=
Ed

Branch
Outgoing Output =
Date Message Path

Ready ®

Select the menu [Repository] -> [Clone].

Steps Repository
> Repository Specify the Git, Mercurial or SVN repository to clone.

Selection _ i) i
@ Remote Git, Mercurial or SVN repository
Local Directory

Repository URL: | https://github.com/JonahTsai/libHemp.git]

"=
ssh://user@server:port/repository-path or svn://server:port/repository-path

() Local Git or Mercurial repository

Finish Cancel

We need the URL for libHemp. Launch
your favorite browser, and head to
http://www.github.com. And enter libHemp
in the search box. Click on the result link
“JonahTsai/libHemp”, and you should

come to the next page. On the lower right
corner of the screenshot, you should see
the highlighted URL. Copy that, and paste
into the SmartGit “Repository URL” and
click [Next].

44

http://www.github.com
http://www.github.com

ahTsai/libHemp - GitHub %

Fle Edit View Favorites Tooks Help

GitHub s repository+ searcn or type a commana ® Explore Features Enterprise Blog W Signin

Select the directory to which the repository should be coned.

JonahTsai/ libHemp *Star 0 YFork 1

HempStick Library, required for Hempstick http://www_hempstick.org

. emacs-24.3
, Perflogs

< Code
4 commits 1 branch 0 releases 1 contributor
© Issues o

P branch- master~ | libHemp / +

11 Pull Requests 0

1. Allow ADC channel mapping to HID reports Axes. ==

. Program Files

Y JonahTsai authored a latest comit dessbesssh B o Puse p FI ()(86)
B conf First checkin in Git ayear ago [shs Graphs 3 rogra m riles
B rtos_adc.c Added copyright GPLv2 notifice. ayear ago

g ¥ Netork . ProgramData
B rtos_adch 1. Allow ADC channel mapping to HID reports Axes aday ago
B rtos_bution.c 1. Allow ADC channel mapping to HID reports Axes. adayago =~ HTTPSclone URL) Recovery
B rtos_button.h Added copyright GPLv2 nofifice. ayearago &
You an clone with HTTPS or

B rtos_hw_pin_configuration.c Added copyright GPLV2 notifice. ayearago supversion
B rios_hw_pin_configuration.h Added copyright GPLY2 nofifce. ayearago @ Clone in Doskiop) tmp

tm_stick ¢ Added copyright GPLY2 nofifce. ayearago
B m. e e %> Download ZIP
B tm_stickh Added copyright GPLY2 nofifce. ayearago . Users

)

’

)

)

)

’
.. System Veolume Information
)

’

)

)

)
r

. Warthog

©2014 GitHub, Inc. Terms Privacy Security Contact Status APl Training Shop Blog About . WlndOWS

. workspace

! Iinemp|

P ¢ System Reserved (D:)

I Local Disk (E:)
_;_ﬂ- Al L

Selection

Customize how and what to clone.

Steps
Repository

> Selection
Eetch all Heads and Tags

Local Directory Folder: New folder

| Make New Folder |

Click the “Browse” button in the next
screen.

Steps Local Directory

Repository Specify the local directory for the new repository.

Selection

> Local Directory Bath: |

Select the c:\workspace\libHemp\ direc-

: : You should end up with the following
tory. Create the directory if necessary. fecn b lbHIEmD fepositon has beer

cloned and all the source code and history

45

are already downloaded and put on your
harddrive.

Repository Edit View Remote Local Branch Query Changes Iools Window Help
B ® o2 & R H @ EE @ i = | =
Pull Sync Push Git-Flow Merge Commit Stage IndexEditor Unstage | Remove Discard Delete Log Blame M Review
Repositories Files x 10 files hidden |/ File Filter [
4|=] libHemp (master)| || Name ‘ State Relative Directory
conf
Changes * \]
<4
o
=
==
<[1 >
Branches *
4 Local Branches (1) i
» master - origin ‘ L ‘ '
> origin (1) - https://githi| Outgoing = Output
Date Message Path 4 @ Clone =
$ git.exe clone -v --progress https://github. Tsai/lit
Cloning into 'C:\workspace\libHemp'. F
POST git-upload-pack (200 bytes)
remote: Reusing existing pack: 30, done. i
< » < il] »
Ready 1 Directory | ®

Repeat the same thing to clone the Hemp-
stick repository. And you should end up
like the following.

Repository Edit View Remote Local Branch Query Changes Tools Window Help
L & |2 m © o » g =) =
Pull Sync Push Git-Flow Merge Commit Stage IndexEditor Unstage | Rernove Discard Delet= Log Elame | M Review
Repositories x Files * 412 files hidden | R File Filter 0
| Hempstick (master)|| Name ‘ State Relative Directory
libHemp (master)
Changes * @
<
o
=
EE
< | m] »
Branches x
4 Local Branches (1) ko
« » « »
» master = origin |L-L__ L
> origin (1) - https://githi|| Outgoing * Output *
Date Message Path 4 @ Clone -
$ git.exe clone -v --progress https://github JonahTsai/Hi| _
Cloning into 'C:\workspace\Hempstick'... E
POST git-upload-pack (200 bytes) N
remote: Reusing existing pack: 556, done. il
<o y R I T— »
Ready 1 Directory ‘ ®

46

